
The complete guide to
Behaviour Driven Development
(BDD) inside Jira

3

4

5

6

6

7

9

The BDD Philosophy

BDD vs other methods

BDD in practice

Automating your BDD process

Planning for BDD

Implementing your BDD workflow

Tips and pitfalls

Contents

BDD, or “Behaviour-Driven Development” is an Agile development

concept initially developed by Dan North in the mid 2000s. It

emerged from an earlier method called TDD or

“Test-Driven Development”.

In TDD, the focus was on ensuring that any user stories were

designed and developed to allow easy and comprehensive testing.

It was a great way for developers and testers to work together

and communicate requirements. However, the Agile philosophy

with its focus on team cohesiveness, communication and user-

centricity, needed a more comprehensive way tocommunicate

requirements that also included the business side.

Hence was born the concept of the “3 Amigos”, or the Developer,

Tester and Business Analyst, who all need to be in sync when

defining, developing and testing requirements and making sure

they cover user expectations. This was the start of BDD, which is

essentially a “language” in which to define test cases associated

with user stories, that makes them understandable to

all three team members.

Introduction to BDD
The BDD Philosophy

The focus of the test case is to describe a behaviour the user

should see when performing a certain action and prioritise those

behaviours that contribute and meet business goals based on

user needs. It has its own syntax and grammar, but is

otherwise tool-agnostic.

Many BDD tools and frameworks have emerged over the
years, perhaps the bestknown of which is the Cucumber
test automation tool with its Gherkin language.

The main purpose of these tools is to link BDD cases to test

automation tools so that the process can be streamlined as

part of the Agile development process.

3

BDD is part of a suite of Agile development methods that also

includes the likes of TDD and ATDD (Acceptance Testing-Driven

Development). All of these methods rely on a “test-first” concept,

meaning that unit tests are written first (which would fail under the

current state of the code), then enough code is developed to pass

the test.

After that, some refactoring will be required to maintain code

hygiene. Once that is done, another test is developed until all

desired functionality has been covered. BDD operates at a slightly

higher level than TDD by prioritising user actions and expected

behaviour.

Both TDD/ATDD and BDD work best within a Continuous

Integration (CI) setup which manages the automated build,

deployment, testing, and feedback of the entire software

multiple times a day, thereby minimising the risk of breaking

behaviours or features due to the frequent feedback and changes.

So if you are considering using BDD, it is strongly recommended

that you combine it with automated testing and CI processes and

tools. One great advantage that BDD offers over simple unit tests is

that it makes the test outcome independent of the implementation

of the unit test of the function or module to be tested.

BDD vs other methods

This achieves two main gains: it makes the code easy to change,

and ensures that any assumptions made in the implementation (a

default value for a variable for instance) do not have any bearing

on the outcome of the test. It is of course possible to use Agile

methodologies with simple unit testing without BDD or TDD and

many teams do so to great effect.

4

Testing in BDD

Test Scenarios

Given… When… Then

Features/Specifications

Living Documentation

Embedded Teams

Specifications of
Product Behaviour

Traditional Testing

Test Cases

Step 1, 2, 3,

Requirements

Static Documentation

Seperate Teams

Functional Tests

Specific cases where you would not want to use BDD include times

when you are developing a rapid prototype that is not expected to

have high test-coverage but is mainly used to demonstrate basic

functionality. Also, if CI is not part of your development process yet,

using BDD might not yield particularly impressive results given the

effort the team needs to put into it. It is possible, even

recommended by some, to use BDD in combination with TDD or

simple unit testing.

The new version of Test Management For Jira (TM4J) now supports

BDD using the Gherkin syntax. A typical Gherkin script takes the

following form:

Given <an initial context>

When <an event occurs>

And <another event occurs>

Then <produce an expected outcome>

This script is linked to a user story as a test case, and the story is

considered ‘Done’ when it passes all test cases via manual or

automated tests.

For more details on the Gherkin syntax, please consult the Gherkin

reference: https://docs.cucumber.io/gherkin/reference/

BDD in practice

5

Unlock BDD testing
in Jira with TM4J

Install for FREE Now!

https://cucumber.io/docs/gherkin/reference/
https://marketplace.atlassian.com/apps/1213259/tm4j-test-management-for-jira?hosting=server&tab=overview&_ga=2.99713497.674506543.1579521910-1897586431.1568729978

When using BDD, you ideally want maximum

integration with your existing tools, so the ideal

BDD setup would include integration with test

automation and CI tools as mentioned above,

and would also integrate with your current Agile

Management tool, e.g. Jira.

This minimises manual work and potential errors

and ensures a seamless transition from

requirements definition all the way to ‘Done’

status. The following sections will explain how to

do that in Jira using TM4J.

Once you have decided to adopt BDD in your team, it is important to bring everyone

up to speed. Running a quick team session to ensure everyone is familiar with the

concept and the syntax, choosing a tool that supports BDD syntax and a tool that

connects it to Jira will be your main tasks here. It is important to recognise that like

any new method, BDD will take some getting used to.

Make sure to allow for more time for communication or feedback between team

members on BDD cases and syntax, and also to sync up after test cases have been

executed and share insights and results, and check the resulting behaviour together.

As a Scrum Master or Product Owner, make sure you build additional time into your

sprints for the first few weeks after you introduce BDD as some test cases will

inevitably have to be re-written or re-tested.

At this stage, you also need to decide whether you are going to automate your

testing process. If so, you will need a test automation tool such as Cucumber. This

will need to be installed and configured prior to creating your BDD test cases in Jira.

In addition, you might want to use a CI tool such as Jenkins to streamline the entire

process of test generation, execution, and deployment.

BDD in Jira
Automating your BDD process

Planning for BDD

6

When using BDD, you ideally want maximum

integration with your existing tools, so the ideal

BDD setup would include integration with test

automation and CI tools as mentioned above,

and would also integrate with your current Agile

Management tool, e.g. Jira.

This minimises manual work and potential errors

and ensures a seamless transition from

requirements definition all the way to ‘Done’

status. The following sections will explain how to

do that in Jira using TM4J.

Implementing your
BDD workflow

7

Jira & TM4J

Send results to
Jira (with TM4J
post-build task)

Pull BDD test cases
from Jira (with
TM4J build task)

Export BDD test
cases from

Jira as reference

Commit Code

CI Server
Development
projects with

automated tests

8

Automating the BDD workflow still requires the use of an external

test automation tool if automated testing is required, otherwise you

can perform the test manually. Tools which parse the standard BDD

description and link it to an automated test exist.

The automated testing tool will be triggered by the ‘given’ and

‘when’ statements, open the software, execute the test and record

the outcome, then compare it to the description in the ‘then’ portion

of the script. If the behaviour checks out, the test is passed.

The recommended best practice is for the “3 Amigos” to sit down at

the start of a sprint and agree on all BDD test cases by writing and

reviewing the Gherkin scripts. Once these have all been signed off,

they can be exported simultaneously by selecting them and

choosing “More” → “Export feature files (BDD-Gherkin), which

generates a feature file parsable by Cucumber.

You can then start using

the new feature by

selecting BDD-Gherkin

from the ‘Type’

dropdown menu when

creating a new test case

for your story.

You will need to import the feature file into your automated test

project and then implement the step definitions, which is the code

that will execute according to the sequence of steps defined in the

feature files.

Once the tests have been executed, the TM4J API, used for

example by the Jenkins plugin, can re-import the test results back

into Jira and publish them in the test case under the “Execution”

tab, showing each test case and its status. A traffic light-style

colour next to the test case will also show its status under the

“Traceability” section of the main story page in Jira.

More than BDD
TM4J not only supports BDD but other test and development

methods just like Waterfall or hybrid models. Just choose the ‘plain

text’ or ‘step by step’ test case type and use your own language/

guidelines to describe the test case.

BBD can’t fix all!
Like any software development “philosophy”, BDD is not without its

pitfalls. It is quite possible to write weak or unpassable tests in BDD,

and the process can be frustrating to some teams.

Don’t clog up your stories with code!
Another common pitfall is to get too technical and start adding

code snippets or other technical details to stories. Given that the

main point of BDD is to facilitate communication between technical

and less technical team members, this can lead to even more

confusion and frustration with the BDD process.

Writing stories is still tricky!
BDD’s focus on user behaviour and system response can

sometimes be a double-edged sword as it requires the involvement

of end users in writing stories, or at least a very knowledgeable

‘user advocate’ such as a particularly customer-focused product

owner. If access to end users is not available or not enough, the

team might risk a misinterpretation and misimplementation of

stories and test scenarios.

Dont dispense with documentation just yet!
Using BDD can sometimes entice teams to dispense with a

requirements gathering and documentation process altogether,

assuming that requirements will be captured in the stories in

enough detail. Although this can work for some teams, it should not

be assumed that any team using BDD for the first time will

automatically be able to dispense with a formal documentation of

requirements. There is no right or wrong answer here, so it’s

important to experiment with keeping the old process, or possibly a

hybrid of the two, before thinking about replacing it with BDD

altogether.

9

Tips and pitfalls

What before how!
Product owners or other team members using BDD for the first

time can sometimes fall into the trap of describing implementation

details in the story, ie specifying the ‘how’ not the ‘what’ of the

desired user behaviour. This robs the developers of the opportunity

to decide on the best technical solution to the problem at hand and

can lead to inconsistencies across implementation in different parts

of the system or even worse, problems when a desired behaviour

needs to be changed further down the road.

Collaborate, collaborate, collaborate!
Finally, possibly the most dangerous pitfall of all is that BDD

requires more collaboration than other, more traditional

methodologies. Not all teams, especially developers, will be used to

this amount of collaboration and some might complain that their

time is being wasted communicating with users/product owners,

testers, and other stakeholders when they should be spending

more time writing code. This is a cultural and mindset shift that

needs to take place and will require patience and coaching.

Ultimately, it might result in some team members deciding to leave,

or in the team deciding to abandon BDD altogether, but in most

cases it can be overcome with time and practice.

10

For these pitfalls,
we recommend two things:

Ease your team in
Try implementing BDD for a small part of a sprint first,

maybe with the most straightforward story you can

think of. Then, as the team get comfortable, gradually

increase the use of BDD across all stories. Consult a BDD

manual such as “BDD in Action” by John Ferguson

Smart.

Get everyone speaking Gherkin
Understanding the BDD philosophy and ensuring the

team have mastered the Gherkin syntax will go a long

way towards improving your BDD performance.

Unlock BDD testing
in Jira with TM4J

Install for FREE Now!

https://marketplace.atlassian.com/apps/1213259/tm4j-test-management-for-jira?hosting=server&tab=overview&_ga=2.223645276.674506543.1579521910-1897586431.1568729978
https://marketplace.atlassian.com/apps/1213259/tm4j-test-management-for-jira?hosting=cloud&tab=overview&_ga=2.162810491.674506543.1579521910-1897586431.1568729978

