A ATLASSIAN .

22
Team

Find vulnerabilities before
security knocks on your door

VWearing belts and suspenders




Set the goals for today
Setting context
Common problems and misconceptions
b
Today’s Plan

Use cases and scenarios

Conclusions and wrap-up



TODAY’S GOAL

We’ll take a journey with real examples
to show security doesn’t have to be
scary



Consider Log4j and Log4Shell
C O n t ex.t Scary because uttacgkers! couldrun an?/thing on

your system

In the movies

Launch missiles, release contagions, destroy alien
spaceships

In the real world

Data breaches, loss of data, uynwanted
applications



Common Security is hard

Too much time
Too much work

p rO b I.e m S Too many tools and tasks
an d Tool confusion
MISCONCEPLIONS  oretwottontethemat

False outcomes. Prioritization. Red herrings.

People don’t care
Peopledocare-ALOT



Use cases L.
Vulnerable Application

Custom Code, Open Source, Habits

Examine Vulnerable Container
Image-level settings

Exploit

IX Suboptimal Infrastructure

Misconfigurations




Vulnerable Source Code

Your teams write great code.

Ap p li C O t i O n S They may introduce vulnerabilities.

HI, THIS 1 OH, DEAR - DID HE. | DID YOU REALLY WELL, WEVE LOST THIS
YOUR SON'S SCHOOL. [ BREAK SOMETHING? |  NAME YOUR SON YEAR'S STUDENT RECORDS. O p en S ource
WERE HAVING SOME Robert'); DROP I HOPE YOURE HAPPY. _0No i : i _
CorPuTeR Tougee. | N Q WAY - / TRGLE S~ 7 || 4 80-90% of a modern application is open-source
\ { apIHPE | You don’t always know what you bring in
: ~OH. YES. UTTE "~ YOUVE LEARNED
‘ m BOBBY TABLES, T0 SANTIZE YOUR
WE CALL HIM. DATABASE INPUTS.

Habits

Add software security to your daily activities and
C1/CD pipeline

Source: https://xkcd.com/327/



The OWASP Foundation provides great resources

Vulnerable
Applications

- Examples and mitigation guidance
- OWASP Top-10
https://owasp.org/www-project-top-ten/

Source Code Consider a SQL In‘jection

String query =
"SELECT \* FROM accounts WHERE custID='"

+ request.getParameter ("id")
+\\'";

Attack your software (or scan, or test...)

- If you don’t, somebody else will




Consider the popular Log4j/Log4Shell
Vulnerable - Zero-day vulnerability

AppliCCltiOﬂS - Arbitrary code execution

- Dependency, also a transitive dependency

- It seemed like everybody used Log4j

Review how you create and patch your code

- Streamline your build makery and processes
- Iterate (2.15, 2.16, 2.17, ..)

Open Source

How to prepare for the next one?
- Be prepared
- Automate processes (build, deploy, test)

- Monitor your repository regularly




Code

Vulnerable - Pre-commit

Applications - IDE Integrations
- CLI Operations - maven/gradle

Git Repo
- Pull Requests
- Scan code
CI/CD
- Scan built code
- Scan built images
- Pipeline gates
Production Environments

- Monitor running environments

Habits

See this resource:

https://snyk.co/uemiWw



https://snyk.co/uemWw

Vulnerable Image Architecture
What's in your container images matters
Containers

Tools & Strategies

Multi-Stage Docker build and other tools

Supply Chain
Know where yourimages came from and be
prepared to prove it



| |
RDaesa R Yo P ==

FROM ruby:2.7.0

Vulnerable
Containers

RUN apt—get update &&\
apt—-get install -y git vim sqglite3 &&\
rm -rf /var/lib/apt/lists/*

RUN gem update —-system 3.0.4 &&\
gem install bundler -v '2.1.2°

COPY .
ENV BUNDLER VERSION 2.1.2 3MB
RUN bundle update &&\ 48 . TMB
bundle install &&\
rails db:setup &&\ 13-debianll => 54.2MB

rails db:migrate
EXPOSE 3000

CMD ["“rails", "server", "-b", "0.0.0.0"]

e neeeeyam / apk / . . .)




FROM ruby:2.7.0

RUN apt—get update &&\
apt—-get install -y git vim sqglite3 &&\
rm -rf /var/lib/apt/lists/x

RUN gem update —-system 3.0.4 &&\
gem install bundler -v '2.1.2°

WORKDIR /usr/src/app/alpha-blog
COPY .
ENV BUNDLER_VERSION 2.1.2
RUN bundle update &&\
bundle install &&\
rails db:setup &&\
rails db:migrate

EXPOSE 3000

CMD ["rails", "server", "-b", "0.0.0.0"]

o ) -

FROM ruby:2.7.0-slim-buster

| |
RDaesa R Yo P ==

RUN apt—-get update &&\
apt—-get install -y \

1l git \
vim \

l . build-essential \
patch \

| ¢ ruby-dev \
zliblg—-dev \

| ® liblzma-dev \
libpg-dev \

libsqlite3-dev &&\

rm —-rf /var/lib/apt/lists/x*
"

RUN gem update —-system 3.1.2 &&\
l o gem install bundler -v '2.1.2°

WORKDIR /usr/src/app/alpha-blog
COPY . .
ENV BUNDLER_VERSION 2.1.2

RUN bundle update &&\
t bundle install &&\
rails db:setup &&\

o rails db:migrate

EXPOSE 3000

CMD ["rails", "server", "-b", "0.0.0.0"]

’MB



FROM ruby:2.7.0 as build-env

RUN apt—-get update &&\
VUlnerOble apt—get install -y git vim sqlite3 &&\
COntClinerS rm —-rf /var/lib/apt/lists/*

RUN gem update ——system 3.1.2 &&\
gem install bundler -v '2.1.2°

WORKDIR /usr/src/app/alpha-blog

Image Architecture SUR -

ENV BUNDLER_VERSION 2.1.2

RUN bundle update &&\
bundle install &&\
rails db:setup &&\
rails db:migrate

Tools & Strategies

FROM ruby:2.7.0-slim-buster

ARG RAILS_ROOT=/usr/src/app/alpha-blog
ARG GEMS_ROOT=$RAILS_ROOT/vendor/bundle
ARG PACKAGES="libsqglite3-0"

ENV RAILS_ENV=development

WORKDIR $RAILS_ROOT




Multi-stage Builds:
- Multiple FROM statements

Vulnerable
Containers

- Final stage = image that gets saved

Alternative build tools:
, - kaniko

Image Architecture

- J1b

- ko

- buildah

- Kpack

Tools & Strategies




Building .
Running
Containe

Image Architect

Tools & Strateg

Supply Chair

| evels of assurance

SLSA levels are like a common language to talk about how secure
software, supply chains and their component parts really are. From
source to system, the levels blend together industry-recognized
best practices to create four compliance levels of increasing
assurance. These look at the builds, sources and dependencies in
open source or commercial software. Starting with easy, basic steps
at the lower levels to build up and protect against advanced threats
later, bringing SLSA into your work means prioritized, practical
measures to prevent unauthorized modifications to software, and a

plan to harden that security over time.

Read the level specifications

Level 1

Easy to adopt, giving you supply chain
visibility and being able to generate

provenance

Level 3

Hardens the infrastructure against

attacks, more trust integrated into

complex systems

Build

Source Deps

Level 2

Starts to protect against software
tampering and adds minimal build

integrity guarantees

Level 4

The highest assurances of build integrity
and measures for dependency

management in place

1facts




Infrastructure
as Code:
Kubernetes

Resources

Understand Limits and Requests

SecurityContext

An API for securing pods and containers

NetworkPolicy

Built-in micro-segmented firewall

Policy Enforcement

Implement your policies as code



Infrastructure
as Code

l.e. Kubernetes

Resource limits &
requests

Container Resources

- Resource requests

- Tells the scheduler how much resource 1s needed to
start a container on.

- Process may use more resources than the request
specifies.

- Resource limits
- Processes can only use up to the limits specified
- Processes exceeding memory limits get "out of memory"
- Processes exceeding CPU limits get throttled

- Without setting limits, all of the node/host
resources may be consumed which can be a DOS vector



Example 3: Pod / Container SecurityContext API
Infrastructure

- Run as non-root / Run as specific user
- Read-only root filesystem

- Linux capabilities
Resource limits &

- Privileged mode
requests

, - Privilege Escalation
SecurityContext:

runAsNonRoOt,

readOnlyRootFS, etc spec:

contailners:
— 1mage: 1mages.mycorp.com/myorig/java—goof: latest
name: java—goof
securityContext:
runAsNonRoot: true
runAsUser: 65534
runAsGroup: 65534




Example 3: Pod / Container SecurityContext API
Infrastructure

- Run as non-root / Run as specific user
- Read-only root filesystem

- Linux capabilities
Resource limits &

- Privileged mode
requests

, - Privilege Escalation
SecurityContext:

runAsNonRoOt,

readOnlyRootFS, etc spec:

contailners:
— 1mage: 1mages.mycorp.com/myorig/java—goof: latest
name: java—goof
securityContext:
readOnlyRootFilesystem: true




Example 3: Pod / Container SecurityContext API
Infrastructure

- Run as non-root / Run as specific user
- Read-only root filesystem

- Linux capabilities
Resource limits &

- Privileged mode
requests

, - Privilege Escalation
SecurityContext:

runAsNonRoOt,

readOnlyRootFS, etc spec:

contailners:
— 1mage: 1mages.mycorp.com/myorig/java—goof: latest
name: java—goof
securityContext:
capabilities:
drop:
— all




Example 3: Pod / Container SecurityContext API
Infrastructure

- Run as non-root / Run as specific user
- Read-only root filesystem

- Linux capabilities
Resource limits &

- Privileged mode
requests

, - Privilege Escalation
SecurityContext:

runAsNonRoOt,

readOnlyRootFS, etc spec:

contailners:
— 1mage: 1mages.mycorp.com/myorig/java—goof: latest
name: java—goof
securityContext:
privileged: false
allowPrivilegeEscalation: false




Example 3:
Infrastructure

Resource limits &
requests

SecurityContext:

runAsNonRoOt,
readOnlyRootFS, etc

Pod / Container SecurityContext API

10 Kubernetes Security Context settings you should understand snyk

1. runAsNonRoot &%/ &

Always set this to true to:

enforce the use of non-root users for your
pod’s containers.

imit access to any host resources
that might mistakenly get exposed
to the container.

2. runAsUser/runAsGroup ¢/ &

These settings can be used to enforce a specific
runtime user and group.

Use with caution—these IDs must exist in the
mage for the container to run. Do not use these
as a replacement for runAsNonRoot.

3. seLinuxOptions ¢/ A

This sets the SEL1nux context which is applied to
the container or pod. Be aware when re-labeling
SEL1nux contexts that this may allow
unintended access.

Eric Smalling
@ericsmalling
Sr. Dev. Advocate at Snyk

4. seccompProfile ¢/ 4

Be cautious when using seccomp profiles.
Generally, it’s okay to provide a profile that
is more restrictive than the default, as long as your

process can run under those restrictions. However,

a less restrictive profile can potentially expose calls
to the host system that could be dangerous.

S.privileged /
allowPrivilegeEscalation

It is usually a bad idea to grant privileged
access to containers. Use speafic capability flags
or other Kubernetes APIs instead.

In most cases, you should also explicitly set
allowPrivilegeEscalationto falseto
stop processes from attaining higher privileges i.e.
via sudo, setuid.

6. capabilities (5

Only provide the minimum required for your
application to function. Linux capabilities
provide fine-grained control over access to
kernel-level calls.

e Matt Jarvis
@marcx) 1o

-
»’ Sr. Dev. Advocate at Snyk

7. readonlyRootFilesystem M

Set this to true whenever possible. In the event
your container was to get compromised, a
read-write filesystem makes it easier for the
attacker to install software or change
configurations. Also, consider making any
volumes mounted to your container read-only
for similar reasons.

8. procMount

Do not change the procMount from the
Default setting, unless you have very specific
configurations—such as nested containers.

9. fsGroup /
fsGroupChangePolicy ¢

If other processes depend on the volume's
pre-existing GID, changing ownership of a
volume using fsGroup can have impacts on
pod startup performance, as well as possible
negative ramifications on shared file systems.

10. sysctls &%

Meadification of kernel parameters via sysctl
should be avoided—unless you have very
specific requirements—as this may destabilize
the host operating system.

L4 g ll\
f‘J*T"T, Pod / [T Container

https://snyk.co/luemVWWx




EX(]mple 3- Network Policies
Infrastructure

- Pod-to-pod network traffic
- Micro-segmented firewall

- Deny-all policy
Resource limits &

- Limits unspecified ingress egress
requests P 9 / eg

. apiVersion: networking.k8s.10/v1l
SecurityContext: kind: NetworkPolicy

metadata:
runAsNonRoot, name: deny-egress

readOnlyRootFS, etc spec:
podSelector: {}

.. policyTypes:
Network Policies _ Egress

egress:
— ports:

— port: 53
oprotocol: UDP
— port: 53
orotocol: TCP




Example 3:
Infrastructure

Resource limits &
requests

SecurityContext:

runAsNonRoot,
readOnlyRootFS, etc

Network Policies

0 Search or jump to... / Pull requests Issues Marketplace Explore
H ahmetb [ kubernetes-network-policy-recipes | Public & Watch 152 ~
<> Code Issues 4 Pull requests Actions Projects Wiki Security Insights
¥ master ~ P 1branch © 0 tags Go to file Add file ~ Code ~
ﬂ boredabdel Merge pull request #86 from avinashdesireddy/netpol#85 ... 128da8f onJan 10 ) 131 commits
BB .github add issue template 4 years ago
BB img Update 4.gif 5 years ago
(3 00-create-cluster.md Update 00-create-cluster.md 4 years ago
[Y 01-deny-all-traffic-to-an-applicati...  standarize kubectl options 2 months ago
:— README.md

Any container

Any container

You can get stuff like this with Network Policies...

Kubernetes Network Policy Recipes

This repository contains various use cases of Kubernetes Network Policies and sample YAML files to leverage in
your setup. If you ever wondered how to drop/restrict traffic to applications running on Kubernetes, read on.

% Fork 1.2k Y7 Star 3.9k v

About

Example recipes for Kubernetes Network
Policies that you can just copy paste

kubernetes security networking

0J Readme
53 Apache-2.0 License
vr 3.9k stars



LIMIT traffic to an application

You can create Networking Policies allowing traffic from only certain Pods.

Example 3:
Use Case:
I n f rCI St rU Ct U re e Restrict traffic to a service only to other microservices that need to use it.

e Restrict connections to a database only to the application using it.

! app=bookstore

role=api

app=coffeeshop % app=bookstore

role=api

Resource limits & kind: NetworkPolicy
apiVersion: networking.k8s.10/vl
requeStS metadata:
. . name: api-allow
SecurityContext: spec:
runAsNonRoot, podSelector:

readOnlyRootFS, etc matchLabels:

app: bookstore

. . role: apil
Network Policies ingress:
— from:
— podSelector:

matchLabels:
app: bookstore




Policy Enforcement Tools
- Pod Security Policy (PSP)

Example 3:
Infrastructure

- Deprecated vl.21
- Removal in v1.25
- Pod Security Admission controller (PSA)

- Replacement for PSP
Resource limits & _ Beta as of vl.23

r .
equests - Enforces Pod Security Standards

SecurityContext: - Kyverno

runAsNonRoot,

- Kubernetes specific
readOnlyRootFS, etc

— Policies defined in K8S CRDs
- Open Policy Agent
Policy Enforcement - Policies written in REGO

- Gatekeeper admission controller




IN SUMMARY

Go get some small victories

One greenlight atatime
Itis an iterative process

Work the multi-level / full stack

Code, Container, Infrastructure
Also the cloud/datacenter, networking, firewalls

Start now

Find a problem to solve, and work it



RESOURCES

Visit us

Snyk at Atlassian Team22: https://go.snyk.io/AtlassianTeamMeetings.html
Booth 2

Follow-us

@ 0 @mrmarcoamorales O @marcoman
@ 0 O @ericsmalling

Links

Bitbucket Cheat Sheet: https://snyvk.co/luem\Ww
Kubernetes Cheat Sheet: https://snyk.co/luemWx



https://go.snyk.io/AtlassianTeamMeetings.html
https://snyk.co/uemWw
https://snyk.co/uemWx




