
Marco Morales, Partner Solutions Architect, Snyk

Eric Smalling, Sr. Developer Advocate, Snyk

Find vulnerabilities before
security knocks on your door
Wearing belts and suspenders

Today’s Plan

Set the goals for today

Setting context

Common problems and misconceptions

Use cases and scenarios

Conclusions and wrap-up

We’ll take a journey with real examples
to show security doesn’t have to be
scary

TODAY’S GOAL

Consider Log4j and Log4Shell

Scary because attackers could run anything on
your system

In the movies

Launch missiles, release contagions, destroy alien
spaceships

In the real world

Data breaches, loss of data, unwanted
applications

Context

Security is hard

Too much time

Too much work

Too many tools and tasks

Tool confusion

I already have a firewall

One tool to rule them all

False outcomes. Prioritization. Red herrings.

People don’t care

People do care – A LOT

Common
problems

and
misconceptions

Use cases

Examine

Exploit

Fix

Vulnerable Application

Custom Code, Open Source, Habits

Vulnerable Container

Image-level settings

Suboptimal Infrastructure

Misconfigurations

Open Source

80-90% of a modern application is open-source

You don’t always know what you bring in

Habits

Add software security to your daily activities and
CI/CD pipeline

Vulnerable
Applications

Source Code

Your teams write great code.

They may introduce vulnerabilities.

Source: https://xkcd.com/327/

The OWASP Foundation provides great resources

- Examples and mitigation guidance

- OWASP Top-10

https://owasp.org/www-project-top-ten/

Consider a SQL Injection

String query =  
"SELECT * FROM accounts WHERE custID=‘"

+ request.getParameter("id")

+ “'";

Attack your software (or scan, or test...)

- If you don’t, somebody else will

Vulnerable
Applications

Source Code

Open Source

Habits

Consider the popular Log4j/Log4Shell

- Zero-day vulnerability

- Arbitrary code execution

- Dependency, also a transitive dependency

- It seemed like everybody used Log4j

Review how you create and patch your code

- Streamline your build makery and processes

- Iterate (2.15, 2.16, 2.17, …)

How to prepare for the next one?

- Be prepared

- Automate processes (build, deploy, test)

- Monitor your repository regularly

Vulnerable
Applications

Source Code

Open Source

Habits

Code

- Pre-commit

- IDE Integrations

- CLI Operations - maven/gradle

Git Repo

- Pull Requests

- Scan code

CI/CD

- Scan built code

- Scan built images

- Pipeline gates

Production Environments

- Monitor running environments

See this resource:

https://snyk.co/uemWw

Vulnerable
Applications

Source Code

Open Source

Habits

https://snyk.co/uemWw

Image Architecture

What's in your container images matters

Tools & Strategies

Multi-Stage Docker build and other tools

Supply Chain

Know where your images came from and be
prepared to prove it

Vulnerable
Containers

Base images:

- Use specific tags

🤷 python:3

🤹 python:3.10

🦄 python:3.10.2 

- The "right" base image

🚛 python:3.10.2 => 917MB

🚗 python:3.10.2-slim => 123MB

🏍 python:3.10.2-alpine => 48.7MB

🚲 gcr.io/distroless/python3-debian11 => 54.2MB 

Layer content:

- Using compound commands

- Use specific packages (apt/yum/apk/...)

Vulnerable
Containers

Image Architecture

Tools & Strategies

Supply Chain

Base images:

- Use specific tags

🤷 python:3

🤹 python:3.10

🦄 python:3.10.2 

- The "right" base image

🚛 python:3.10.2 => 917MB

🚗 python:3.10.2-slim => 123MB

🏍 python:3.10.2-alpine => 48.7MB

🚲 gcr.io/distroless/python3-debian11 => 54.2MB 

Layer content:

- Using compound commands

- Use specific packages (apt/yum/apk/...)

Vulnerable
Containers

Image Architecture

Tools & Strategies

Supply Chain

Multi-stage Builds:

- Multiple FROM statements

- Final stage = image that gets saved

Vulnerable
Containers

Image Architecture

Tools & Strategies

Supply Chain

Multi-stage Builds:

- Multiple FROM statements

- Final stage = image that gets saved 

Alternative build tools:

- kaniko

- jib

- ko

- buildah

- Kpack

Vulnerable
Containers

Image Architecture

Tools & Strategies

Supply Chain

Know where your images come from

- Don't use unvetted base images

- Use secure, managed artifact repositories

- Never deploy manually built images 

Emerging technologies & tools

- Software Bill Of Materials (SBOM)

- CycloneDX

- SPDX

- Artifact signing

- Sigstore

- Notary v2

- Supply chain Levels for Software Artifacts

- a.k.a: SLSA

- slsa.dev

Building &
Running

Containers

Image Architecture

Tools & Strategies

Supply Chain

Resources

Understand Limits and Requests

SecurityContext

An API for securing pods and containers

NetworkPolicy

Built-in micro-segmented firewall

Infrastructure 
as Code: 
Kubernetes

Policy Enforcement

Implement your policies as code

Container Resources

- Resource requests

- Tells the scheduler how much resource is needed to
start a container on.

- Process may use more resources than the request
specifies. 

- Resource limits

- Processes can only use up to the limits specified

- Processes exceeding memory limits get "out of memory"

- Processes exceeding CPU limits get throttled

- Without setting limits, all of the node/host
resources may be consumed which can be a DOS vector

Infrastructure
as Code

i.e. Kubernetes

Resource limits &
requests

SecurityContext:
runAsNonRoot,

readOnlyRootFS, etc

Network Policies

Policy Enforcement

Pod / Container SecurityContext API

- Run as non-root / Run as specific user

- Read-only root filesystem

- Linux capabilities

- Privileged mode

- Privilege Escalation

Example 3:

Infrastructure

Resource limits &
requests

SecurityContext:
runAsNonRoot,

readOnlyRootFS, etc

Network Policies

Policy Enforcement

 spec:

 containers:

 - image: images.mycorp.com/myorig/java-goof:latest

 name: java-goof
 securityContext:

 runAsNonRoot: true

 runAsUser: 65534 #nobody

 runAsGroup: 65534 #nobody

Pod / Container SecurityContext API

- Run as non-root / Run as specific user

- Read-only root filesystem

- Linux capabilities

- Privileged mode

- Privilege Escalation

Example 3:

Infrastructure

Resource limits &
requests

SecurityContext:
runAsNonRoot,

readOnlyRootFS, etc

Network Policies

Policy Enforcement

 spec:

 containers:

 - image: images.mycorp.com/myorig/java-goof:latest

 name: java-goof

 securityContext:
 readOnlyRootFilesystem: true

Pod / Container SecurityContext API

- Run as non-root / Run as specific user

- Read-only root filesystem

- Linux capabilities

- Privileged mode

- Privilege Escalation

Example 3:

Infrastructure

Resource limits &
requests

SecurityContext:
runAsNonRoot,

readOnlyRootFS, etc

Network Policies

Policy Enforcement

 spec:

 containers:

 - image: images.mycorp.com/myorig/java-goof:latest

 name: java-goof

 securityContext:
 capabilities:

 drop:

 - all

Pod / Container SecurityContext API

- Run as non-root / Run as specific user

- Read-only root filesystem

- Linux capabilities

- Privileged mode

- Privilege Escalation

Example 3:

Infrastructure

Resource limits &
requests

SecurityContext:
runAsNonRoot,

readOnlyRootFS, etc

Network Policies

Policy Enforcement

 spec:

 containers:

 - image: images.mycorp.com/myorig/java-goof:latest

 name: java-goof

 securityContext:
 privileged: false

 allowPrivilegeEscalation: false

Pod / Container SecurityContext API

- Run as non-root / Run as specific user

- Read-only root filesystem

- Linux capabilities

- Privileged mode

- Privilege Escalation

Example 3:

Infrastructure

Resource limits &
requests

SecurityContext:
runAsNonRoot,

readOnlyRootFS, etc

Network Policies

Policy Enforcement

 spec:

 containers:

 - image: images.mycorp.com/myorig/java-goof:latest

 name: java-goof

 securityContext:
 privileged: false

 allowPrivilegeEscalation: false

https://snyk.co/uemWx

Network Policies

- Pod-to-pod network traffic

- Micro-segmented firewall

- Deny-all policy

- Limits unspecified ingress / egress

Example 3:

Infrastructure

Resource limits &
requests

SecurityContext:
runAsNonRoot,

readOnlyRootFS, etc

Network Policies

Policy Enforcement

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: deny-egress

spec:

 podSelector: {}

 policyTypes:

 - Egress
 egress:

 - ports:

 - port: 53

 protocol: UDP

 - port: 53

 protocol: TCP

Example 3:

Infrastructure

Resource limits &
requests

SecurityContext:
runAsNonRoot,

readOnlyRootFS, etc

Network Policies

Policy Enforcement

https://github.com/ahmetb/kubernetes-network-policy-recipes

Example 3:

Infrastructure

Resource limits &
requests

SecurityContext:
runAsNonRoot,

readOnlyRootFS, etc

Network Policies

Policy Enforcement

https://github.com/ahmetb/kubernetes-network-policy-recipes

Policy Enforcement Tools

- Pod Security Policy (PSP)

- Deprecated v1.21

- Removal in v1.25

- Pod Security Admission controller (PSA)

- Replacement for PSP

- Beta as of v1.23

- Enforces Pod Security Standards

- Kyverno

- Kubernetes specific

- Policies defined in K8S CRDs

- OPA Gatekeeper

- Open Policy Agent

- Policies written in REGO

- Gatekeeper admission controller

Example 3:

Infrastructure

Resource limits &
requests

SecurityContext:
runAsNonRoot,

readOnlyRootFS, etc

Network Policies

Policy Enforcement

IN SUMMARY

Go get some small victories

One green light at a time

It is an iterative process

Work the multi-level / full stack

Code, Container, Infrastructure

Also the cloud/datacenter, networking, firewalls

Start now

Find a problem to solve, and work it

RESOURCES

Visit us

Snyk at Atlassian Team22: https://go.snyk.io/AtlassianTeamMeetings.html

Booth 2

Follow-us

	 	 	 	 @mrmarcoamorales	 	 	 	 	 @marcoman

	

	 	 	 	 @ericsmalling

Links

Bitbucket Cheat Sheet: https://snyk.co/uemWw

Kubernetes Cheat Sheet: https://snyk.co/uemWx

https://go.snyk.io/AtlassianTeamMeetings.html
https://snyk.co/uemWw
https://snyk.co/uemWx

Thank you!

