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A few years ago, I would have been 
disappointed with the following 
statements:
• Our team does not fail pipelines with failed tests.

• Our team does deploy code that has failed 
security scans.

• Our team chooses manual cloud deployments 
over automation.

• Our team moves from full stack to a federated 
model.

This is the hard reality in 
many large enterprises
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Hello, my name is Mirco Hering
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Mirco Hering
Global DevOps Lead

And I sometimes break rules…

Blog at http://notafactoryanymore.com

…consciously.

http://notafactoryanymore.com/
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The environment we’re talking about is that of larger 
complex enterprises
The transformation starting point is along the following lines:
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Portfolio Complex contract Lack of documentation

Infrastructure Custom, COTS, SAAS BAs, testers, engineers, etc.
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The Atlassian landscape we work with
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Our ground to cover

1. CD pipelines

2. Full stack teams

3. The cloud

→ And of course, some take-home tips!
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Pipelines — good intentions

“The goal of CD pipelines is to 
build/deploy/assess each new 
version of an application and 
provide fast, comprehensive 
feedback.” 
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Pipelines — from pipelines to networks
Compile 

& package

Run unit tests Create 
ST env Deploy code Create clustered 

env

Tear down ST 
env

Deploy code Run perf test

Run security 
test

Run ops test

Prod deploy

Committer: jdoe
Story:25

Commit ID: 113 Run test(s)Load test data

Code analysis

• Frequency
• Cost
• Maintenance
• License• Impact assessment

• Duration
• Risk velocity

• Frequency of usage
• Maintenance 
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Full stack teams — good intentions

“The most efficient way for DevOps to organize is in a 
full stack team that includes people from the 

infrastructure team.”
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Hmm…
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To DevOps team or not to DevOps team?
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Agile 
team …Agile 

team
Agile 
team
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Cloud services Infra services

Org-specific DevOps services

DevOps platform team,
a.k.a platform engineering

DevOps tribe
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Creating autonomous teams instead of full stack teams

1. Make information available 
(e.g., log aggregation)

2. Provide self-service for the obvious 
(passwords, servers, etc.)

3. Measure dependencies and eradicate 
them
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Question: Is the team ready for full autonomy?

Hmm…
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Cloud — good intentions

“Environments in the cloud are full automated, 
and nothing should be manual.”

and…

“In the cloud, servers are immutable.”
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Cloud — the better way

Experiment
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Describe Automate

1 2 3
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Cloud golden image vs. automation in layers
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OS

MW/DB

App Binary Op tooling agents

App config Static data

Transactional data

Op tooling config

DB structures

Hardening

StorageCPU Network
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Cloud golden image vs. automation in layers
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The boardroom question

How do I know we are on the right track if each answer is contextual?
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It depends.

It depends.

It depends.
It depends.

It depends.

It depends.

It depends.It depends.

It depends.
It depends.

It depends.

It depends.

It depends.
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Rule 1: Make economic decisions
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Rule 2: Measure things
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Business effectiveness
Experiment & expand

Delivery efficiency
Speed up & automate

Operations reliability
Automate & react

Architectural flexibility
Simplify & decouple
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Rule 2: Measure things
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Business effectiveness | Experiment & expand
• Number of experiments run

• Average time to decision

• Funnel data

• Number of systems interactions

• Feature usage

Delivery efficiency | Speed up & automate
• Cycle time

• Number of manual steps

• Number of deployment failures

• Time to feedback

• Transaction cost

Operations reliability | Automate & react
• Mean time to recover

• Number of automated tickets

• Percentage of services automated

• Number of defects

• Percentage of proactive found vs. user found
• Cloud usage

Architectural flexibility | Simplify & decouple
• Percentage of transactions in old vs. new

• Average size of release

• Percentage of interfaces that are backward compatible

• Number of outdated components

• Number of security concerns
• Technical debt
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Rule 3: Provide options
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Rule 3: Provide guidance
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Summary: Provide the teams with a compass, not a map
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One step at a time… one conscious step at a time
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Thank you


