
The content described herein is intended to outline our general
product direction for informational purposes only. It is not a
commitment to deliver any material, code, or functionality,

and should not be relied upon in making purchasing decisions.
The development, release, and timing of any features or

functionality described herein remain at the sole discretion 
of Atlassian and is subject to change.



Breaking all the 
DevOps rules

Mirco Hering |@mircohering



@mircohering

A few years ago, I would have been 
disappointed with the following 
statements:
• Our team does not fail pipelines with failed tests.

• Our team does deploy code that has failed 
security scans.

• Our team chooses manual cloud deployments 
over automation.

• Our team moves from full stack to a federated 
model.

This is the hard reality in 
many large enterprises

3



@mircohering

Hello, my name is Mirco Hering

4

Mirco Hering
Global DevOps Lead

And I sometimes break rules…

Blog at http://notafactoryanymore.com

…consciously.

http://notafactoryanymore.com/


@mircohering

The environment we’re talking about is that of larger 
complex enterprises
The transformation starting point is along the following lines:

5

Portfolio Complex contract Lack of documentation

Infrastructure Custom, COTS, SAAS BAs, testers, engineers, etc.



@mircohering

The Atlassian landscape we work with

6



@mircohering

Our ground to cover

1. CD pipelines

2. Full stack teams

3. The cloud

→ And of course, some take-home tips!

7



@mircohering 8

Pipelines — good intentions

“The goal of CD pipelines is to 
build/deploy/assess each new 
version of an application and 
provide fast, comprehensive 
feedback.” 



@mircohering 9

Pipelines — from pipelines to networks
Compile 

& package

Run unit tests Create 
ST env Deploy code Create clustered 

env

Tear down ST 
env

Deploy code Run perf test

Run security 
test

Run ops test

Prod deploy

Committer: jdoe
Story:25

Commit ID: 113 Run test(s)Load test data

Code analysis

• Frequency
• Cost
• Maintenance
• License• Impact assessment

• Duration
• Risk velocity

• Frequency of usage
• Maintenance 



@mircohering 10

Pipelines — from pipelines to networks
Compile 

& package

Run unit tests Create 
ST env Deploy code Create clustered 

env

Tear down ST 
env

Deploy code Run perf test

Run security 
test

Run ops test

Prod deploy

Committer: jdoe
Story:25

Commit ID: 113 Run test(s)Load test data

Code analysis



@mircohering

Full stack teams — good intentions

“The most efficient way for DevOps to organize is in a 
full stack team that includes people from the 

infrastructure team.”

11



@mircohering

Hmm…

12



@mircohering

To DevOps team or not to DevOps team?

13

Agile 
team …Agile 

team
Agile 
team

Re
le

as
e 

tr
ai

n/
 

ag
ile

 p
ro

gr
am

Cloud services Infra services

Org-specific DevOps services

DevOps platform team,
a.k.a platform engineering

DevOps tribe



@mircohering

Creating autonomous teams instead of full stack teams

1. Make information available 
(e.g., log aggregation)

2. Provide self-service for the obvious 
(passwords, servers, etc.)

3. Measure dependencies and eradicate 
them

14



@mircohering

Question: Is the team ready for full autonomy?

Hmm…

15



@mircohering

Cloud — good intentions

“Environments in the cloud are full automated, 
and nothing should be manual.”

and…

“In the cloud, servers are immutable.”

16



@mircohering

Cloud — the better way

Experiment

17

Describe Automate

1 2 3



@mircohering

Cloud golden image vs. automation in layers

18

OS

MW/DB

App Binary Op tooling agents

App config Static data

Transactional data

Op tooling config

DB structures

Hardening

StorageCPU Network



@mircohering

Cloud golden image vs. automation in layers

19



@mircohering

The boardroom question

How do I know we are on the right track if each answer is contextual?

20

It depends.

It depends.

It depends.
It depends.

It depends.

It depends.

It depends.It depends.

It depends.
It depends.

It depends.

It depends.

It depends.



@mircohering

Rule 1: Make economic decisions

21



@mircohering

Rule 2: Measure things

22

Business effectiveness
Experiment & expand

Delivery efficiency
Speed up & automate

Operations reliability
Automate & react

Architectural flexibility
Simplify & decouple



@mircohering

Rule 2: Measure things

23

Business effectiveness | Experiment & expand
• Number of experiments run

• Average time to decision

• Funnel data

• Number of systems interactions

• Feature usage

Delivery efficiency | Speed up & automate
• Cycle time

• Number of manual steps

• Number of deployment failures

• Time to feedback

• Transaction cost

Operations reliability | Automate & react
• Mean time to recover

• Number of automated tickets

• Percentage of services automated

• Number of defects

• Percentage of proactive found vs. user found
• Cloud usage

Architectural flexibility | Simplify & decouple
• Percentage of transactions in old vs. new

• Average size of release

• Percentage of interfaces that are backward compatible

• Number of outdated components

• Number of security concerns
• Technical debt



@mircohering

Rule 3: Provide options

24



@mircohering

Rule 3: Provide guidance

25



@mircohering

Summary: Provide the teams with a compass, not a map

26



@mircohering

One step at a time… one conscious step at a time

27



Thank you


