
The content described herein is intended to outline our general
product direction for informational purposes only. It is not a
commitment to deliver any material, code, or functionality,

and should not be relied upon in making purchasing decisions.
The development, release, and timing of any features or

functionality described herein remain at the sole discretion 
of Atlassian and is subject to change.



DevOps best practices

to better manage your Jira 
instances



Hello there!

3

Investors

Gil Hoffer
Co-Founder & CTO

Salto

Founded

2019

Offices

TLV, SF

Employees

70 $69M

Two funding 
rounds



4

SaaS apps run the modern company

Sales

Marketing Customer 
support

Finance

R&D



All these apps 
require deep 

customizations



6

Challenges (1/2)

How do we really know 
what is implemented?

1

Why a change was made, 
by whom, and when?

2

What will be the impact of 
a planned change? Inside 
Jira? On other systems?

3

How do we develop 
changes reliably, 
without impacting 
production?

4



7

Challenges (2/2)

How do we collaboratively 
review those changes in a 
team and create collective 
code ownership?

How do we reliably promote 
those changes to production?

How do we roll back,
if needed?

How do we keep a paper trail 
for compliance?

8

How do we know what is already 
broken in our implementation 
(broken automations, screens, 
workflows, etc.)

5 7

6

9



A fusion between development and operations helped IT take a big leap forward 

The “as code” concept completely transformed IT 

8

Faster release cycles
Shorter delivery sessions
Increased quality
Continuous delivery

Automating operational 
tasks with code

Manual error-prone 
processes
Organizational silos
Long delivery cycles
Infrequent releases
Reduced quality



9

Why does “as code” matter (subset)?

Version-controlled and 
immutable, makes auditing 
easier and rollbacks feasible

Maintainable, testable, and 
collaborative — reduces the 
bus factor

Linters and static 
analysis tools to 
enforce consistency

Modular, 
composable, 
and separate

Predictable,
repeatable,
and consistent



We should adapt best 
practices, methodologies, 
and tools from the Dev 
and DevOps world into 
how we manage our 
business applications. 

10

Business 
engineering



11

• Having a clear and complete textual representation of the implementation 
(declarative and code) will enable visibility and easily answer “what is 
implemented?” (As easy as ⌘+F)

• Version that representation in a source control system (such as Git) and be 
able to answer questions on changes over time.

• Code analysis tools can answer questions 
on dependencies and change impact.

• Create shared responsibility within the team —
everyone should be aware of all major changes.

Business Engineering 101 (1/2)



12

• Always develop in high-fidelity sandboxes.
• Not impacting production
• Not testing on nonrepresentative setup 

• A change proposal → feature branch in Git and pull request.

• Promoting a change from dev to UAT to prod →
git merge and deploy.
• The holy grail — CI/CD
• The holier grail — trunk-based development (TBD)

• Rollback → Git revert and deploy.

• Maintain a proper paper trail for changes →
tie change requests (for example, from Jira) to Git commits.

Business Engineering 101 (2/2)



13

• Everything we discussed so far is not Jira-specific.
• As an industry, we should have a standard way to practice business 

engineering across our entire stack.

Cross-business application applicability



Examples

14



15

Represent everything “as code”



16

Render the metadata in a friendly way (1/2)



17

Render the metadata in a friendly way (2/2)



18

Understand dependencies



19

Monitor configuration changes



20

Compare environments



21

Version control



22

Deploy changes (from UAT � Prod)



Recap

23

Manage your 
customizations “as code.”
Apply DevOps best 
practices to the way you 
manage them.
You can start today, even 
by taking small steps.



Stay in touch

24

Free tier (free for life)

@salto_io@salto-iosalto.io


