
Enterprise
Continuous Testing
Transforming Testing for Agile and DevOps

Wolfgang Platz
with Cynthia Dunlop

PR
OF

IT
S

TO
 B

EN
EF

IT
 S

PE
CI

AL
IS

TE
RN

E

Enterprise
Continuous Testing
Transforming Testing for Agile and DevOps

By Wolfgang Platz
With Cynthia Dunlop

Copyright © 2019 Tricentis
All Rights Reserved

Foreword vii

Preface ix

1: Enterprise Continuous Testing 1
What is Continuous Testing? 4
We Have a Problem (Two, Actually) 5
Closing the Gap 9

2: A New Currency for Testing: Risk 10
A New Currency for Testing 11
All Tests Are Not Created Equal 14

3: Use Risk Prioritization to Focus Testing 17
Defining Risk 17
Assessing Your Application’s Risks 18
Assessment Complete…Now What? 24
Alternative Assessment Approaches 27
Updating the Risk Assessment in Each Iteration 28

4: Design Tests for Highly-Efficient Risk Coverage 30
Getting Started: Defining Equivalence Classes 31
Combinatorics 36
Linear Expansion 37
Tackling Your Top Risks 40
Alternative Combinatorics Approaches 41

Table of Contents

5: Automate Testing for Fast Feedback 43
Test Automation Reality vs Target 45
Why is Test Automation So Hard? 47
Bridging the Gap 50
Simplify Automation Across the Technology Stack 51
End the Test Maintenance Nightmare 53
Shift to API Testing 55
Choose the Right Tool(s) for Your Needs 58
Model-Based Test Automation:
The Fast Track to Sustainable Test Automation 59

6: Completing the Continuous Testing Puzzle 65
Test Data Management 66
DevOps Toolchain Integration 70
Service Virtualization 70
Exploratory Testing 75
Load Testing 80
Test Impact Analysis 83
Change Impact Analysis for SAP and
Packaged Applications 85

7: Charting Your Path and Tracking Your Progress 88
Continuous Testing Maturity Model 88
One Company’s Path to Continuous Testing 91
Measuring Your Progress 96

8: On the Death of Testing…and Wildebeests 97

Appendix A: Who Should Be Testing? 101

Appendix B: Your Eroding Test Pyramid 105
Why Unit Tests Erode 107
How to Stabilize the Erosion 108

Appendix C: What About Our TCoE? 109
The Structure of Traditional TCoEs 110
How Traditional TCoEs Impede Agile 111
TCoE Aspects That Could Help Enterprise

Agile Testing 112
Digital TCoEs: A New Path Forward 113

Appendix D: KPIs for Measuring Your Progress 117

References and Related Resources 119

vii

Foreword

By Clark Golestani

Previously President of Emerging Businesses and Global CIO for Merck, and
presently the Managing Director of C Sensei Group.

With “digital” becoming part of every aspect of activity, brand, and repu-
tation for a business, software testing has become vital. Yet, in this digital
age, the amount of manual effort that goes into testing is incredible. I don’t
think any business process is as manual as software testing. The hands-on
nature of software testing—even at software companies—is simply amaz-
ing. I have more automation in my coffee maker than most enterprises
have in their testing processes. This is not only expensive; it also holds back
innovation.

When you modernize testing for your digital initiatives, testing is elevated
from being a line item on your P&L to something that’s strategically critical
going forward. By transforming testing, you can actually bridge the gaps in
bimodal/two-speed IT—dramatically accelerating the “slower” speed and
enabling the entire organization to move much faster.

Testing ensures that a digital asset will perform in the way you expect …
or hope that it does. Yet testing has often been viewed as a necessary evil.
It was just something you needed to do in order to get things released and
paid for. It was never deemed strategic. This perspective came from the
classic, waterfall approach to developing software, where testing was often
outsourced. But the reality today is that that world is long gone.

Now, the move to DevOps and Agile methodologies has made testing an
absolutely critical component of development activity. Continuous Testing

viii

becomes center stage to that product and needs to be integrated at every
level, from the beginning through all of the continuous release cycles.

Along with a better product, you gain other benefits. You start to uncover
development areas where you can create incredible levels of productivity
gains, produce far better digital products, and save money—all at the same
time.

The bottom line is that if you don’t treat testing as a strategic initiative
that’s imperative to your digital success, your lunch is going to get eaten by
your competitors. I don’t think any leader can afford to take their eye off
software testing.

ix

Preface

Let’s face it. Businesses don’t want—or need—perfect software. They want
to deliver innovations as soon as possible. A single delay might be the only
opportunity a competitor needs to gain market share and become the new
disruptor.

Testing is essential for accelerating the delivery of innovative applications
without incurring unacceptable business risk. We need fast feedback on
whether the latest innovations will work as expected or crash and burn in
production. We also need to know if these changes somehow broke the
core functionality that the customer base—and thus the business—de-
pends upon.

However, even with the most extreme automation, we simply don’t have
time for the “test everything” approach. It’s impossible to test every possible
path through a modern business application every time that we want to
release. Fortunately, we don’t need to. If we rethink our testing approach,
we can get a thorough assessment of a release candidate’s business risk with
much less testing than most companies are doing today.

Enterprise Continuous Testing: Transforming Testing for Agile and DevOps
introduces a Continuous Testing strategy that helps enterprises accelerate
and prioritize testing to meet the needs of fast-paced Agile and DevOps
initiatives. Software testing has traditionally been the enemy of speed and
innovation—a slow, costly process that delays releases while delivering
questionable business value. This new strategy helps you test smarter, so
testing provides rapid insight into what matters most to the business. It
repositions testing from a bottleneck to a trusted advisor. Instead of the ref-
eree interrupting your progress for some trivial issue, testing becomes your
coach, helping you push your limits and surge ahead of the competition.

x

Target Audience
This book is written for senior quality managers and business executives
who need to achieve the optimal balance between speed and quality when
delivering the software that drives the modern business. It provides a road-
map for how to accelerate delivery with high confidence and low business
risk.

Note that my focus is on functional testing. Developer-level Continuous
Testing (featuring unit testing, the foundation of the famous inverted test
pyramid, as well as practices such as static analysis and peer code review) is
certainly important. However, these “Development Testing” best practices
are already reasonably well-documented and understood. The place where
organizations inevitably get stuck is functional testing—especially end-to-
end functional testing.

Moreover, the struggles and strategies discussed throughout the book are
targeted to Global 2000 companies. Most Continuous Testing success sto-
ries are heavily drawn from the so-called unicorns, but most businesses are
not unicorns. Their reality includes complex legacy architectures, stringent
compliance requirements, and a long history of manual testing. How can
these organizations reinvent their testing processes to support Agile and
DevOps—without slowing innovation or disrupting business-critical oper-
ations? That’s the primary question this book aims to answer.

In summary: If you want to realign your Global 2000 organization’s quality
process with the unrelenting drive towards accelerated delivery speed and
“Continuous Everything,” then you’re in the right place.

xi

Acknowledgments
Many people were involved in developing this book, as well as the practice
and methodology that underlies it. Special thanks are due to Wayne Ariola,
Jordan Grantham, Teisha Grassberger, and Elmar Pauwels for their assis-
tance in reviewing and preparing this book. It’s also important to recognize
the contributions of Sandeep Johri, Clark Golestani, Elmar Juergens, Tim
Koopmans, Alexander Mohr, Sreeja Nair, Mike Nemeth, Viktoria Praschl,
Daniela Schauer, Georg Thurner, Chris Trueman, Mario Van Oyen, and
Robert Wagner.

1

1: Enterprise Continuous Testing

Today, “Digital Transformation” is driving enterprises to innovate at light-
ning speed. We need to dedicate resources to creating new sources of cus-
tomer value while continuously increasing operational agility. Otherwise,
we risk waking up one day to find out that even though we did nothing
“wrong,” we somehow lost.

The speed of Digital Transformation is already staggering, and it’s only go-
ing to increase. To put this into some very concrete terms, consider that:

• There are 7.7 billion people in the world
• 4.5 billion have regular access to a toilet
• 5.5 billion own a mobile phone

All of a sudden, a huge number of people jumped from a very provin-
cial lifestyle straight into digital times—creating a tremendous demand for
more, and more innovative, software.

Anyone responsible for producing software knows that the traditional ways
of developing and delivering software aren’t adequate for meeting this new
demand. Not long ago, most companies were releasing software annually or

Enterprise Continuous Testing

CHAPTER 1

2

Enterprise Continuous Testing

bi-annually. Now, iterations commonly last 2 weeks or less. While delivery
cycle time is decreasing, the technical complexity required to deliver a posi-
tive user experience and maintain a competitive edge is increasing.

Ever-Growing Challenge

Perceived
Disruption

Introduce
Continuous Testing
to meet demand

Years
Months

Months
Weeks

Weeks
Days

Days
Hours

Hours
Minutes

Delivery
Cycle Time

Technical Complexity
& Rate of Change

Today

9%

In terms of software testing, this brings us to an inflection point. In most
organizations, testers were already racing to keep pace when delivery cycles
were longer and application complexity was lower. Every quarter or so, the
development team would pass a release candidate over the wall to QA, who
would then scramble to validate it as thoroughly as possible in the allotted
time—largely with manual testing.

3

1: Enterprise Continuous Testing

Now, Digital Transformation initiatives such as Agile and DevOps are
pushing traditional testing methods to their breaking point. Organizations
are releasing much more frequently—from monthly on the low-end, to
multiple times per hour on the high-end. Testers are expected to test each
user story as soon as it’s implemented (even when that functionality inter-
acts with other functionality which is evolving in parallel). Additionally,
testing is also expected to alert the team when the steady stream of chang-
es unintentionally impacts the legacy functionality that was implemented,
tested, and validated in previous weeks, months, or years. And as orga-
nizations increasingly edge towards Continuous Delivery with automated
delivery pipelines, intermediary quality gates and the ultimate go/no-go
decisions will all hinge upon test results.

Is your testing process up to the task?

Test automation is required, but it’s not sufficient. When organizations
adopt modern architectures and delivery methods, even teams with palpa-
ble test automation wins face roadblocks:

• They can’t create and execute realistic tests fast enough or
 frequently enough

• They’re overwhelmed by a seemingly never-ending stream of false
positives and incomplete tests—not to mention all the test
maintenance required to address them

• They can’t confidently tell business leaders whether a release
 candidate is fit to be released

Testing must undergo its own digital transformation to meet the needs
of modern Digital Transformation initiatives. This is where “Continuous
Testing” comes into play.

4

Enterprise Continuous Testing

What is Continuous Testing?
Continuous Testing is the process of executing automated tests as part of
the software delivery pipeline in order to obtain feedback on the business
risks associated with a software release as rapidly as possible. It evolves and
extends test automation to address the increased complexity and pace of
modern application development and delivery.

Continuous Testing really boils down to providing the right feedback to the
right stakeholder at the right time. For decades, testing was traditionally
deferred until the end of the cycle. At that point, testers would provide all
sorts of important feedback…but nobody really wanted to hear it then. It
was too late, and there was little the team could feasibly do, except delay
the release. With Continuous Testing, the focus is on providing actionable
feedback to people who really care about it—at the point when they are
truly prepared to act on it.

DevOps is all about releasing differentiating software as efficiently as possi-
ble. Continuous Testing helps us achieve that by…

• Helping development teams identify and fix issues as efficiently
as possible (accelerating innovation)

• Helping business leaders determine when it’s reasonably safe to re-

lease (accelerating delivery)

This is achieved by mastering—and going beyond—test automation. It re-
quires aligning testing with business risks, ensuring that testing effectively
assesses the end user experience, and providing the instant quality feedback
required at different stages of the delivery pipeline.

5

1: Enterprise Continuous Testing

We Have a Problem (Two, Actually)
Unfortunately, we’re not quite there yet. In most organizations, testing de-
lays application delivery while providing limited insight into whether the
applications under test are meeting stakeholder expectations. It’s not fast
enough to help teams find and fix defects when it’s optimal to do so. And
it’s reporting on low-level test failures (e.g., 78% of our tests passed) rather
than providing the business-focused perspective needed to make fast release
decisions (e.g., Only 38% of our business risk was tested…and 25% of that
didn’t work properly).

Let’s take a quick look at each of these problems in turn.

The Speed Problem
DevOps is all about removing the barriers to delivering innovative software
faster. Yet, as other aspects of the delivery process are streamlined and accel-
erated, testing consistently emerges as the greatest limiting factor.

A recent GitLab survey that targeted developers and engineers found that
testing is responsible for more delays than any other part of the develop-
ment process.

Testing

Planning

Deploying to Production

Monitoring

Test Data Management

Other

Code Development

Code Reviews

52%

47%

31%

30%

27%

25%

20%

5%

Where in the development process do you encounter the most delays?

6

Enterprise Continuous Testing

Testing

Planning

Deploying to Production

Monitoring

Test Data Management

Other

Code Development

Code Reviews

52%

47%

31%

30%

27%

25%

20%

5%

Source: GitLab – 2018 Global Developer Report

The same conclusion was reached by a DevOps Review survey that polled
a broader set of IT leaders across organizations practicing DevOps. Again,
testing was cited as the #1 source of hold-ups in the software delivery pro-
cess. In fact, testing “won” by a rather wide margin here. 63% reported that
testing was a major source of delays; the second-highest source of delays
(planning) was cited by only 32% of the respondents.

Plan
Code

10

20

30

40

50

60

70

Pre-test Build Test/QA Release Deploy Review/
improve

63%

21%22%

16%

32%

23%
30%

What are the main hold-ups in the software production process?

Source: Computing Research – DevOps Review

7

1: Enterprise Continuous Testing

1 Capgemini, Sogeti, HPE, World Quality Report 2018-19, 2019 (https://www.capgemini.com/service/world-quality-re-
port-2018-19/).
2 Tricentis research conducted from 2015-2018 at Global 2000 companies—primarily across finance, insurance, telecom,
retail, and energy sectors.
3 Tricentis research conducted from 2015-2018 at Global 2000 companies—primarily across finance, insurance, telecom,
retail, and energy sectors.
4 SDLC Partners Study, 2017 (https://sdlcpartners.com/point-of-view/test-data-management-chances-are-your-test-data-is-
costing-you-more-time-and-money-than-you-know/).
5 Delphix, State of Test Data Management, 2017 (https://www.delphix.com/white-paper/2017-state-test-data-management).
6 Tricentis research conducted from 2015-2018 at Global 2000 companies—primarily across finance, insurance, telecom,
retail, and energy sectors.

Why is testing such a formidable bottleneck? That could be the topic of
another book. For now, let’s summarize some key points:

• The vast majority of testing (over 80%) is still performed manually
—even more at large enterprise organizations1

• Approximately 67% of the test cases being built, maintained, and
executed are redundant and add no value to the testing effort2

• At the organizations that have significant test automation, testers
spend 17% of their time dealing with false positives and another
14% on additional test maintenance tasks3

• Over half of testers spend 5-15 hours per week dealing with test data
(average wait time for test data = 2 weeks)4

• 84% of testers are routinely delayed by limited test environment
access (average wait time for test environments = 32 days)5

• The average regression test suite takes 16.5 days to execute, but the
average Agile sprint is 2 weeks, from start to finish—including plan-
ning, implementation, and testing6

• The average application under test now interacts with 52 dependent
systems—which means that a single end-to-end transaction could
cross everything from microservices and APIs, to a variety of mobile

8

Enterprise Continuous Testing

7 Bas Dijkstra, Service Virtualization, O’Reilly, 2017 (https://www.oreilly.com/webops-perf/free/service-virtualization.csp).
8 Tricentis research conducted from 2015-2018 at Global 2000 companies—primarily across finance, insurance, telecom,
retail, and energy sectors.

and browser interfaces, to packaged apps (SAP, Salesforce, Oracle,
ServiceNow…), to custom/legacy applications, to mainframes7

The software testing process wasn’t working perfectly even before the ad-
vent of Agile and DevOps. Now we’re asking teams to “just speed it up”
at the same time that modern application architectures are making testing
even more complex. Given that, it’s hardly surprising that speed expecta-
tions aren’t being met.

The Insight Problem
Only 9% of companies perform formal risk assessments on their require-
ments/user stories. Most attempt to cover their top risks intuitively, and
this results in an average business risk coverage of 40%.8 Would you feel
comfortable driving a race car with blinders on? That’s essentially what
you’re doing if you’re rapidly delivering software with insight into less than
half of your total business risk.

Moreover, most organizations can’t immediately differentiate between a test
failure for a trivial issue and a business-critical failure that must be ad-
dressed immediately. Without an automated means of gaining this insight,
you can’t trust automated quality gates to stop high-risk candidates from
progressing through the delivery pipeline. Human review will be required
at each decision point—slowing the process and undermining the ultimate
goal of release automation.

9

1: Enterprise Continuous Testing

Closing the Gap
How do you evolve from the slow, burdensome testing that delivers ques-
tionable results to the lean, streamlined testing that provides DevTest team
members, as well as IT leaders, the fast feedback they need to accelerate
innovation and delivery? That’s what I aim to outline in the following chap-
ters.

Read on to learn how to:

• Prioritize requirements by risk—so you can test the top ones first
• Design tests that cover your risks as efficiently as possible
• Automate tests rapidly, with minimal maintenance
• See the risk impact of your test failures
• Identify critical “blind spots” that are not yet tested
• Prepare your automation for constant, consistent execution

within CI
• Balance test automation with creative exploration

10

Enterprise Continuous Testing

What does this really tell you?

You know that…

• There’s a total of 53,274 tests cases
• Almost 80% of those tests (42,278) passed
• Over 19% of them failed
• About 1% did not execute

But…would you be willing to make (or recommend) a release decision
based on these results? Maybe the test failures are related to some trivial
functionality. Maybe they stem from the most critical functionality: the
“engine” of your system. Or, maybe your most critical functionality was not
even tested at all. Trying to track down this information would require tons
of manual investigative work that yields delayed, often-inaccurate answers.

A New Currency
for Testing: Risk

CHAPTER 2

42,278 10,086 910Version 7.5

If you’ve ever looked at test results, you’ve probably seen something like
this:

11

2. A New Currency for Testing: Risk

In the era of Agile and DevOps, release decisions need to be made rap-
idly—even automatically and instantaneously. Test results that focus on
the number of test cases leave you with a huge blind spot that becomes
absolutely critical—and incredibly dangerous—when you’re moving at the
speed of Agile and DevOps.

A New Currency for Testing

Test coverage wouldn’t be such a bad metric if all application functions
and all tests were equally important. However, they’re not. Focusing on the
number of tests without considering the importance of the functionality
they’re testing is like focusing on the number of stocks you own without
any insight into their valuations.

Based on the test results shown above, you can’t tell if the release will ignite
a “software fail” scenario that gets your organization into the headlines for
all the wrong reasons. If you want fast, accurate assessments of the risks
associated with promoting the latest release candidate to production, you
need a new currency in testing: risk coverage needs to replace test coverage.

Test coverage tells you what percentage of the total application functions
are covered by test cases. Each application has a certain number of func-
tions; let’s call that n functions:

However, you probably won’t have time to test all n functions. You can test
only m of the available n functions:

12

Enterprise Continuous Testing

You would calculate your test coverage as follows:

For instance, if you have 200 functions but tested only 120 of those func-
tions, this gives you 60% test coverage:

Risk coverage tells you what percentage of your business risk is covered by
test cases. Risk coverage accounts for the fact that some tests are substan-
tially more important than others, and thus have a higher risk weight than
the others (we’ll explore exactly how risk weights are determined in the next
chapter).

With risk coverage, the focus shifts from the number of requirements tested
to the risk weight of the requirements tested. You can usually achieve much
higher risk coverage by testing 10 critical requirements than you can by
testing 100 more trivial ones.

The sum of all risk weights always totals 100%:

If you add up the risk weights for the m requirements that have been tested,
this gives you the risk coverage RC:

For a simple example, assume that the risk weights of your core require-
ments are as follows (we’ll take a deep dive into risk weighting in the next
chapter):

13

2. A New Currency for Testing: Risk

Risk Coverage [%]

66% 9% 15%Core Bank 10%

If you fully cover the Capture Order requirement, you’ll achieve 80% risk
coverage. If you cover the Rectify Order and Cancel Order requirements,
you’ll achieve only 20% risk coverage. In other words, you get 4X the
amount of risk coverage with half as much work. This is a prime example
of “test smarter, not harder.”

By measuring risk coverage, you gain insight into:

1. How rigorously your top business risks were tested
2. Whether your top risks are meeting expectations (based on the cor-

related testing outcomes)
3. The severity of your “blind spot”: the percentage of your business

risk that is not tested at all

For example, consider the following results:

80%Capture Order

Client Side Validation

Check Eligibility

Check Suitability

Check Availability

Market Side Validation

Rectify Order

Cancel Order

26.7%

23.7%

1.5%

1.5%

53.3%

10%

10%

14

Enterprise Continuous Testing

We don’t worry about the number of test cases here because we have much
more powerful insight: we can tell that only 66% of our Core Bank busi-
ness risk is tested and appears to be working as expected. Additionally, we
know that the functionality for 9% of our business risk seems to be broken,
the functionality for 15% of our business risk has tests that aren’t running,
and the functionality for 10% of our business risk doesn’t have any tests at
all. This means that at least 9%—and potentially 34%—of the functional-
ity for our business risk is not working in this release.

Would you rather know this…or that 53,274 tests were executed and al-
most 80% passed?

Now, let’s return to our earlier question: are you confident promoting this
release to production?

All Tests Are Not Created Equal

The reason why traditional test results are such a poor predictor of release
readiness boils down to the 80/20 rule (i.e., the Pareto principle). Most com-
monly, this refers to the idea that 20% of the effort creates 80% of the value.

0%

0%

10%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20% 30% 40% 50% 60% 70% 80% 90% 100%

The law - 80:20 rule

... we implement 80%
of the functionality

with 20% of the effort...

15

2. A New Currency for Testing: Risk

The software development equivalent is that 20% of your transactions rep-
resent 80% of your business value…and that tests for 20% of your require-
ments can cover 80% of your business risk.

Most teams already recognize that some functionality is more important
to the business, and they aim to test it more thoroughly than functionality
they perceive to be more trivial. Taking the alternative path—trying to test
all functionality equally, regardless of its perceived risk—soon becomes a
Sisyphean effort. With this route, you quickly approach the “critical limit”:
the point where the time required to execute the tests exceeds the time
available for test execution.

The law - 80:20 rule

0%

0%

10%

10%

20%

30%

40%

50%

60%

70%

80%
90%

100%

20% 30% 40% 50% 60% 70% 80% 90% 100%

... we will cover 80%
of our business risk.

with 20% of the effort...

16

Enterprise Continuous Testing

However, when teams try to intuitively cover the highest risks more thor-
oughly, they tend to achieve only 40% risk coverage, and end up accumu-
lating a test suite that has a high degree of redundancy (a.k.a. “bloat”). On
average, 67% of tests don’t contribute to risk coverage—but they make the
test suite slow to execute and difficult to maintain.

As the next chapter will explain, once you achieve an accurate assessment of
where your risks lie, you can cover those risks extremely efficiently. This is
a huge untapped opportunity to make your testing more impactful. If you
understand how risk is distributed across your application and you know
which 20% of your transactions are correlated to that 80% of your busi-
ness value, it’s entirely feasible to cover your top business risks without an
exorbitant testing investment. This translates to a test suite that’s faster to
create and execute, as well as less work to maintain. Add in the appropriate
automation and correlation, and you’ll reach the “holy grail”: fast feedback
on whether a release has an acceptable level of business risk.

Low
Risk

Medium

Risk

High

Risk

20%

Test
Cases

Business
Risk

Coverage

80%

Critical Limit

The time needed for testing is
infinitely larger than the time
available

17

3: Use Risk Prioritization to Focus Testing

Many organizations think that this risk-based approach to testing sounds
great in theory, but doubt that they can really achieve it—especially given
the limited downtime available with today’s unrelenting, fast-paced devel-
opment iterations. Understanding and targeting the top business risks is
actually a relatively simple and painless process. In fact, we’ve found that
the less time you spend on it, the better the results.

In this chapter, I’ll explain how you can systematically identify your top
risks in a matter of hours. This is a foundational step for 1) determining
where to focus your testing efforts and 2) monitoring how well your busi-
ness risks are tested—and whether they are actually working as expected.

Defining Risk

Before diving into how to assess your top risks and cover them as efficiently
as possible, let’s first take a step back and consider what risk really means.

At its most basic level, risk quantifies the potential of losing something of
value—and “business risk” quantifies the potential of negatively impacting

Use Risk Prioritization
to Focus Testing

CHAPTER 3

18

Enterprise Continuous Testing

the business. This “negative impact” could manifest itself in terms of lost
revenue, brand erosion, falling stock prices, diminished internal productiv-
ity, and so on.

Business risk is determined by the following formula:

Risk = Frequency × Damage

Frequency is a measure of how often the associated item (requirement, user
story, etc.) is used. Is it part of almost every core business transaction or is
it used only in fairly specialized cases?

Damage is a measure of the potential damage that could result from the
failure of the associated item. Would it prevent a core transaction from
proceeding? Would there be significant financial impacts? Would it simply
cause an inconvenience with an intuitive workaround? Or, would it lead to
regulatory non-compliance?

Ultimately, the more frequently something is used and the more damage
that its failure could cause, the higher the risk. For example, a rarely-used
payment type option might have a higher risk than a commonly-used
customization option (e.g., change the application’s UI colors to “dark
mode”).

Assessing Your Application’s Risks

At Tricentis, we’ve spent 8 years developing, testing, and fine-tuning a pro-
cess for helping organizations rapidly assess the business risk of their appli-
cations’ various components (requirements, epics, user stories, etc.). Here is
the rapid assessment process we’ve found to deliver the best results.

19

3: Use Risk Prioritization to Focus Testing

Step 1: Stakeholder Commitment
Get several key stakeholders to commit to a 1.5 day meeting with someone
to guide them through the risk assessment process.

Step 2: Requirements Review
Briefly review the requirements, epics, user stories, etc. for the application
under test (in this book, I’ll use the terms “requirements” and “subrequire-
ments” as catch-alls for all the possible options). If you have a fairly com-
plex system, you might want to initially focus on the epic level instead of
the user story level to keep the granularity manageable.

You don’t have to address every requirement when you’re just starting off.
Focus on covering the main business objects and elementary use cases. For
example, business objects might be customer, contract, car, etc. Elementary
use cases might be create, administer (e.g., increase, decrease), and delete.

Note: Rather than recruit the business analysts for this task, it’s usual-
ly easier—and more effective—to have business testers complete the
requirements review (Step 2) and risk ranking (Step 3). The business
testers then send the initial ranking to the business analysts for review
(Step 4).

20

Enterprise Continuous Testing

Step 3: Risk Ranking
First, rank the requirements based on their actual or anticipated usage fre-
quency. Start by selecting the most frequently used requirement and rank
it a 5. Next, rank the least frequently used requirement a 1. Then, rate the
others by comparing them to the most and least frequently used ones. The
frequency should double at each stage; for example, 2 is twice as frequent
as 1, 3 is twice as frequent as 2, …

Next, repeat the same process for damage: the amount of damage that could
ensue if this requirement failed. Again, start by selecting the requirements
that could cause the greatest and least damage, then use those two extremes
to rate the others.

The goal is to end up with an assessment like this:

Frequency Damage

Req critical 5 5

Req B 5 4

Req C 4 4

Req D 2 5

. . .

. . .

. . .

Req trivial 1 1

Note that the ranking should be completed incrementally, hierarchy level
by hierarchy level. You start with the top-level requirements, then move to
the next level below that, and so on.

Step 4: Ranking Review
Once the process is completed, give other interested parties the opportu-
nity to review the risk ranking results—with the warning that if you don’t

21

3: Use Risk Prioritization to Focus Testing

receive any feedback within a week, you’ll start using the current ratings
and be open to revisiting the ratings later.

Step 5: Calculating Risk Contributions
Once the risks for each requirement are settled, you’ll want to use them to
determine the risk contribution of each layer of your requirement struc-
ture—as well as the tests associated with each layer of that structure.

First, you calculate the risk weight. I mentioned earlier that you get the risk
level by multiplying the frequency and damage values. For example:

Frequency Damage Risk

Very low 1 1 1

. . . .

. . . .

. . . .

Very high 5 5 25

If you’re rating frequency and damage on a scale of 1 to 5, this gives you a
minimum risk of 1 (very low frequency and very low damage) and a max-
imum risk of 25 (very high frequency and very high damage). This results
in a risk spread of 1:25.

However, the risk spread of business value across most enterprise systems is
actually much greater than that. Research has shown that in large enterpris-
es, the least critical functionality is 0.4 the importance of the most critical
functionality. This is a factor of 250—so we need to amplify the spread
between very high risk and very low risk accordingly.

The following formula will get you extremely close to that (1:256), so that’s
the approach I recommend:

 Absolute Weight = 2 Frequency × 2 Damage

22

Enterprise Continuous Testing

With this approach, the frequency and damage are expressed as follows:

Frequency Damage Risk

Very low 21 21

. . . .

. . . .

. . . .

Very high 25 25

This changes the risk calculations to:

Frequency Damage Risk

Very low 2 2 4 1

. . . .

. . . .

. . . .

Very high 32 32 1024 256

The result is a risk spread of 4:1024—which is the equivalent of 1:256.

Once you understand the concept behind these rankings, you can use au-
tomation (e.g., via a Continuous Testing platform like the Tricentis plat-
form) to streamline the process—especially if you are working with many
requirements. For example, assume you were performing a risk assessment
for a retail application. If your requirements were specified in a require-
ments management system like Atlassian Jira, you would sync them into
your Continuous Testing platform. Next, you would specify the frequency
and damage for each item. The risk (i.e., absolute weight) would then be
calculated automatically.

23

3: Use Risk Prioritization to Focus Testing

From the absolute weights, you can determine the relative weight: the
weighting of each requirement relative to all other requirements on the
same hierarchical level. Here, the Calculate Shipping Costs subrequirement
accounts for 41% of its parent Order Process requirement. The relative
weights at any given hierarchical level will always add up to 100%.

24

Enterprise Continuous Testing

You can also determine the Business risk contribution percentage, which
indicates how much each element in the requirement hierarchy contributes
to the overall application risk. The Business risk contribution percentage
across all available hierarchical levels will add up to 100%.

For example, the Calculate Shipping Costs subrequirement that accounts for
41% of its parent Order Process requirement also accounts for 18% of the
total application risk.

Assessment Complete…Now What?

When the risk assessment is completed, you should have a crystal-clear un-
derstanding of where your greatest risks lie. Your next challenge: covering
your top risks as efficiently as possible. There are two parts to this:

1. Determining where to add tests to establish acceptable coverage of
your top business risks

25

3: Use Risk Prioritization to Focus Testing

2. Determining how to add tests so that they cover the targeted busi-
ness risks as efficiently as possible

The first part involves determining what’s most critical to test. If you’re
starting from scratch, plan to begin by testing your highest risk, then work
back from there as your resources permit. If you have existing tests, cor-
relate them to your risk-weighted requirements and run them. This will
give you a baseline of your existing risk coverage—and insight into the gaps
you should work to fill.

For example, assume you’re expected to start testing the following applica-
tion, and you have time to test only half of your requirements before the
upcoming release.

Which do you want to tackle first? If you choose Order Process and Shop-
ping Cart, you’ll cover over 80% of the application’s risk. But if you choose
Customer Tasks and Handle Products, you’ll cover around 10% of the ap-

26

Enterprise Continuous Testing

plication’s risk—with the same level of testing effort. When you have this
insight into risk contribution, it’s simple to make smart tradeoffs on how to
best utilize the limited testing time available.

Once you start adding tests (the next chapter will cover this in detail),
linking them to requirements will help you identify the risk contribution of
each test. Moreover, this correlation between tests, requirements, and risk
is essential for obtaining risk-based reporting. With everything linked and
correlated, you’ll gain insight into:

• Prominent gaps in your risk coverage
• The business impact of your test failures
• The readiness of particular requirements
• The application’s overall release readiness

Once you know where to add tests, you’ll want to design those tests in a
way that achieves high risk coverage as efficiently as possible. This means
that each test should have a distinct purpose and a clear contribution to risk
coverage—and that any tests which do not add value should be removed
to accelerate execution speed and streamline test maintenance. The next
chapter outlines a methodology for accomplishing that.

27

3: Use Risk Prioritization to Focus Testing

Alternative Assessment Approaches

Seem too simple? We (Tricentis) thought so, too. That’s why we applied
and compared three different approaches across telecom and insurance
companies:

• The rapid assessment method outlined here
• A deep dive where a larger group of business analysts reviewed and

challenged the results of the rapid assessment
• A review of real data on frequency and damages

Here’s how the 3 different approaches compared:

Deep
Dive

Real
Data

Rapid
Assessment

3 weeks

pretty
good

bad

terribly
wrong

top
quality

Results

(--)

(-)

(+)

(++)

3 weeks Time1.5 days

28

Enterprise Continuous Testing

Why did the deep dive approach deliver such poor results? Political cor-
rectness. Telling someone that “their” functionality is not as important as
other functionality is like telling them that their baby is ugly. With all the
business analysts sitting together and trying to avoid offending one anoth-
er, you end up with essentially the same weights for all the requirements.
This negates the value of the entire exercise.

Not surprisingly, assessments based on actual frequency and damage data
provided the top-quality results. However, this approach required 10X as
much time, given all the data collection and correlation that was required.
It was more accurate, but not 10X better. In most cases, you won’t even
have the option of accessing real damage and frequency data. But even if
you do have access to it, think about whether the time required to collect
and correlate it all is really worth it.

Updating the Risk Assessment
in Each Iteration

Of course, when you’re working in an Agile process, you’re going to have
new requirements every couple of weeks. However, you don’t want to add
those new requirements into the core risk structure—not at first, at least.

When you start a new sprint (ideally, during the planning meeting), you
create a list of user stories for that sprint and compare them against one
another—not against all the other requirements that are already in your risk
structure. Why? Because new functionality is more likely to fail than func-
tionality that you have already checked and verified. All new functionality
introduced in a given sprint will be riskier than your existing functionality
(progression testing vs. regression testing). The weighting will help you de-
termine how to allocate your limited in-sprint testing time among the var-
ious new user stories. All the new user stories are likely to have issues—but

29

3: Use Risk Prioritization to Focus Testing

you want to focus your resources on testing the ones with the greatest risk
potential.

For example, the in-sprint user story risk assessment might look like this:

Then, after all those user stories are verified and deemed “done done,” you
review the risk assessment again. This time, you re-rank the frequency and
damage in relation to the larger risk structure. Now that these user stories
have “graduated” from progression testing to regression testing, they should
be ranked accordingly. This re-ranking will help you immediately under-
stand the severity of a regression test failure.

30

Enterprise Continuous Testing

As the last chapter outlined, a risk-weighted assessment of your require-
ments and subrequirements helps you decide where to focus your testing
efforts. Based on an assessment like the following, you might decide to start
off by testing the subrequirements that have the greatest contribution to
the overall risk coverage, then address the other subrequirements as time
permits.

Design Tests for
Highly-Efficient Risk Coverage

CHAPTER 4

31

4. Design Tests for Highly-Efficient Risk Coverage

Once you know what to test, you need to determine how to test it. Now,
you want to focus on achieving the greatest risk coverage for the targeted
requirements as efficiently as possible.

We’ve already established that all requirements are not created equal (from a
risk perspective). The same holds true for the tests created to validate those
requirements. A single strategically-designed test can help you achieve as
much, if not more, risk coverage than 10 other tests that were “intuitively”
designed for the same requirement.

The goal of this chapter is to help you test your highest-risk requirements
as efficiently as possible. This is accomplished with a “less is more” strategy.
Strive for the fewest possible tests needed to 1) reach your risk coverage
targets AND 2) ensure that when a test fails, you know exactly what appli-
cation functionality to investigate.

If you already have a test suite for your highest-risk requirements, this ex-
ercise will help you identify gaps as well as eliminate redundant test cases
that slow execution speed and add to your overall test maintenance burden.

Getting Started: Defining Equivalence
Classes

Assume we have a simple auto insurance application that calculates the
annual premium using the following business logic:

• Anyone younger than 18 years of age will not be insured
• Drivers between 18 and 23 pay a 10% surcharge
• Drivers 60 and older get a 5% discount
• Women get a 20% discount
• Drivers living in an urban city area pay a 15% surcharge

32

Enterprise Continuous Testing

To start, you need to understand the dimensions of the problem—the at-
tributes you need to focus on. The obvious attributes are:

• Age, which we will represent as a range from 0 to 100
• Gender, which has 2 options (male/female)
• Location, which has 2 options (city [urban] vs. country [rural])

If you wanted to test all possible combinations of Age (0-100), Gender
(male or female) and Location (city or country), you would have 400 test
cases:
 100 × 2 × 2 =400

However, there’s no need to create 400 test cases. In fact, I’ll show you how
to achieve the same risk coverage and code coverage with just a handful of
test cases.

The key to reducing the number of test cases required is understanding
and applying equivalence classes. Each equivalence class represents a range
of inputs that produce the same result in the application under test. Any
value within an equivalence class is just as likely to expose a defect as any
other value within that class—so there’s no additional benefit of testing
multiple different values within a given equivalence class. These tests are
logically redundant, and it’s typically not worth your time and effort to
create, maintain, and execute them. In fact, their existence increases your
test suite bloat—which is hardly going to help you achieve your goal of
“lean” testing.

To really clarify this concept of equivalence classes, let’s return to the in-
surance example and create equivalence classes for each range of attribute
values that should produce the same result.

First, consider age.
• Based on the requirement Anyone younger than 18 years of age will not

be insured, we can create one equivalence class for age < 18. It doesn’t

33

4. Design Tests for Highly-Efficient Risk Coverage

matter if the applicant is age 1, 6, 12, or 17. In all those cases, the
application will be rejected.

• From the requirement Drivers between 18 and 23 pay a 10% sur-
charge, we can create another equivalence class for ages 18 to 23.
Again, if you test the application for a 19-year-old driver, you don’t
also need to test it for drivers who are 18, 20, 21, 22, and 23.

• After reviewing the final age-related requirement (Drivers 60 and
older get a 5% discount), we would want to create two final equiva-
lence classes for age: one for ages 24 to 59 and one for ages 60 and
over. Any driver from age 24 to 59 will not receive any age-related
surcharges or discounts. Moreover, any driver aged 60+ will receive
the standard 5% senior discount.

In summary, this gives us the following equivalence classes for the age at-
tribute:

• <18
• 18>23
• 24>59
• >59

With Tricentis’ test design, these equivalence classes would be rendered as
follows:

34

Enterprise Continuous Testing

Why is it safe to assume that every value in an equivalence class produces
the same result? Because all values in each equivalence class cover the same
piece of code. Imagine the following (extremely simplified for demonstra-
tion purposes) piece of code:

switch case age

 case <18

 case 18>23

 case 24>59

 case else

To ensure that the age functionality is tested thoroughly, you need to cover
all the case statements in the code. You can achieve that coverage with just
four values—one that represents each of the four equivalence classes. For
instance, you could use 16, 21, 45, and 70:

16
covers

 adding
21 covers....

4adding
45 covers...

 adding
70 covers...

switch case age switch case age switch case age switch case age

case <18 case <18 case <18 case <18

case 18>23 case 18>23 case 18>23 case 18>23

case 24>59 case 24>59 case 24>59 case 24>59

case else case else case else case else

35

4. Design Tests for Highly-Efficient Risk Coverage

If you tested 16, 21, 45, and 70, there is no value added by testing addi-
tional age variations. Think of all the values you now do NOT need to test:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
78 79 80 … 100

Testing any of those additional values in each equivalence class would re-
quire extra time to:

• Design the tests
• Automate the tests
• Run the tests
• Maintain the tests

All for no additional benefit.

The same concept applies for gender and location. These are both simpler
than age because the options are binary (whereas age was a continuum). For
gender, the (simplified) code is something like:

switch case gender

 case male

 case female

36

Enterprise Continuous Testing

To cover this code, you need two attribute values: male and female. Each is
an equivalence class.

Likewise, for location (urban/city vs. rural/country), the (simplified) code is:

switch case location

 case city

 case country

To cover this code, you need two attribute values: city and country. Again,
each is an equivalence class.

In summary, the business logic in the above example yields the following
equivalence classes:

• Age < 18
• Age 18-23
• Age 24-59
• Age > 59
• Male
• Female
• City (Urban)
• Country (Rural)

Since these are equivalence classes, we can select just one representative
value from each class.

Combinatorics

Next, we want to cover all this logic—thoroughly and efficiently. Given
that there are 4 age groups, 2 gender categories, and 2 location categories
to test, the common assumption is that you need 16 tests (4 x 2 x 2) to

37

4. Design Tests for Highly-Efficient Risk Coverage

cover everything. Fortunately, that’s not the case. Actually, you can cover all
that application logic with just 4 test cases if you take an “each choice,” or
orthogonal, approach to test design.

1. Age less than 18
2. Age between 18-23 + male + city (urban)
3. Age between 24 and 59 + female + country (rural)
4. Age greater than 59 + either male or female + either city (urban) or

non-city (rural)

However, there’s a problem. What if the second test passes and the third
test fails? What functionality is failing: the 24-59 age group pricing, the
discounted rates for females, or the discounted rates for non-city residents?
Further testing would be required to hone in on exactly what failed. Al-
though this solution is extremely efficient, it’s not ideal.

Linear Expansion

Enter linear expansion. Linear expansion is almost as efficient as the above
approach, and it also ensures that you can always determine what function-
ality was responsible for a given test failure.

With linear expansion, you begin with what’s called the “happy path” or

4 < 18

m

18 - 23

f

city non-city

24 - 59 > 59

2

2

16

Age

Gender

Location

x

38

Enterprise Continuous Testing

“straight through”: the test that uses the most important attribute values
and achieves the highest risk coverage. On average, the “straight through”
covers 4X more of your risk than the other paths.

From the straight through, you vary just one attribute instance each time.
Returning to our example, this approach gives us two additional tests:

1. Age 24-59 + male + city (straight through)
2. Age 24-59 + female + city
3. Age 24-59 + male + country
4. Age 18-23 + male + city
5. Age greater than 59 + male + city
6. Age less than 18

Attribute variations are bolded above.

Now, if a single test other than the “straight through” fails, we know exactly
what application logic is failing: it’s obviously the part of code related to the
variation in the failed test.

For example, if all tests pass except for
Age greater than 59 + male + city

then we know that the code behind the Drivers 60 and older get a 5% dis-
count requirement needs to be reviewed.

If all tests pass except for

39

4. Design Tests for Highly-Efficient Risk Coverage

Age 24-59 + female + city

then we know that the code behind the Women get a 20% discount require-
ment needs to be reviewed.

The only real constraint of linear expansion is that it assumes you can “mix
and match” attribute values in any combination and still produce logical
outcomes. That’s often the case. However, some combinations just don’t
make sense—and, more importantly, certain application behavior cannot
be triggered without a very specific combination of attributes.

For instance, assume that the insurance application needs to provide an
additional 10% discount for drivers who are retired—but retirement age
varies for men and women (as it does in Austria, where women retire at 60
and men retire at 65). In this case, a 64-year-old woman would receive the
retirement discount, but a man of the same age would not.

Or, consider a couple of examples in the retail space: shipping costs vary
according to product type (digital downloads incur no shipping costs) and
the value of the order subtotal (shipping is free for purchases over $50). To
exercise the “shipping cost calculation” code, you would need to test a real
item, not a digital download. To exercise the “free shipping discount” code,
you would need to test a purchase over $50. To thoroughly test this func-
tionality, you would also need to test purchases that are $50 or less—as well
as ensure that shipping costs are not added for digital downloads.

40

Enterprise Continuous Testing

If your test design tool lets you specify relations, that should help you add
the missing tests and avoid the meaningless ones. If not, you’ll need to
address this in a manual review. Nevertheless, the extremely efficient test
suite that this process yields will save you tremendous time in the long
run—throughout test execution, maintenance, test result review, and root
cause analysis.

Tackling Your Top Risks
For the fastest path to high risk coverage, start with your highest-risk re-
quirements, and then design “straight throughs” for each of them. Next,
apply linear expansion to increase their risk coverage with minimal addi-
tional effort—while still maintaining a high degree of efficiency. The most
critical straight throughs are great candidates for quick smoke testing, while
the “linearly-expanded” versions are likely better-suited for more extensive
regression test runs.

While building out your test suites, the “less is more” adage applies. You
want just enough tests to cover your risks and help you track each test
failure back to the responsible application logic. Anything beyond that will
only increase your text execution time as well as your team’s maintenance
burden—so why waste time creating them in the first place?

41

4. Design Tests for Highly-Efficient Risk Coverage

Alternative Combinatorics Approaches

I strongly recommend the linear expansion test design approach based on
the results I’ve seen it achieve. I believe it’s the perfect balance of efficiency
and specificity. However, there are a number of other combinatorial test
design strategies you can choose from. The following sections provide a
quick survey of how they all compare.

For all cases, assume the following simple scenario: an insurance calculator
that considers 15 different attributes (gender, vehicle type, etc.), each of
which can have 2 different instances (male/female, car/truck, etc.).

Linear Expansion
With the linear expansion strategy described above, you could cover the
options with 16 tests. First, you would start off by defining a “straight
through” or “happy path” with the attributes that achieve the greatest risk
coverage. You then vary one attribute value for each test. Each test has a
clear objective: one test checks the functionality for the female discount,
one test checks the functionality for the heavy payload rate increase, etc.
You end up with slightly more tests than the ultra-efficient orthogonal ap-
proach presented below, but the test increase is still linear—you don’t end
up with a combinatorial explosion of tests.

All Possible Combinations
If you decide to test all possible combinations, you will end up with a
combinatorial explosion of tests: 32,768 tests! Since you’re covering each
and every possible combination, risk coverage is extremely high. However,
this is just an extremely simple example, and the number of tests is already
unmanageable. Few teams will have the resources to create, execute, review,
and maintain all of these tests. Moreover, when a test fails, you can’t in-
stantly tell which corresponding attribute or instance is responsible for the
failure. You’d have to review the outcomes of many of the 32,767 other tests
to determine exactly what triggered the failure.

42

Enterprise Continuous Testing

Pairwise (All Pairs)
Pairwise approaches aim to cover each pair of instances for all business-rel-
evant attributes at least once. With a pairwise approach, you could use
20 tests to cover all 420 possible pairs. Here, you avoid the combinatorial
explosion of test cases; instead, you get logarithmic growth in attributes
and quadratic growth in instances. However, each test still does not have
a unique test objective, which means that additional review is required to
determine what a test failure really means.

Orthogonal/Each Choice
The orthogonal approach aims to cover each attribute at least once. You
can achieve this with 2 test cases that cover 30 singles. This is the absolute
minimum number of test cases you could have and still cover all 30 of the
attributes. However, if a test failed, you’d have to run additional testing to
determine exactly which attribute and instance triggered the failure.

In summary:

Test cases
required

Growth in
test cases

Test
precision

Root cause
analysis

Linear
Expansion

16 test cases
cover 30
singles

Acceptable
(Linear) High Easy

All possible
combinations 32,768 Extreme Low Difficult

Pairwise
20 test cases
cover 420

pairs
Acceptable

(logarithmic) Low Difficult

Each choice
(orthogonal)

2 test cases
cover 30
singles

Minimal Low Difficult

43

5. Automate Testing for Fast Feedback

To derive the greatest value from a carefully-crafted test design, you must
ensure that the planned tests are executed as rapidly and as often as needed.
In yesterday’s waterfall development iterations, manual testing was often
a viable—though costly—solution. The benefit of automation has always
been evident. Yet, with labor arbitrage, the low cost of manual testing al-
lowed it to remain prevalent for much longer than it should. With cost-ef-
fective manual testing options at their fingertips, organizations deferred
initiatives to build and scale test automation.

Even 5 years ago, only 30% of enterprise software testing was performed
fully “in house,” and the vast majority of that testing was not automated.9

Today, 97% of organizations are practicing Agile to some degree and 73%
have active or planned DevOps initiatives.10 With this fundamental shift,
test automation reaches a tipping point. Testers are expected to be embed-
ded in the team and testing is expected to be completed “in-sprint.” With
this fundamental shift, test automation reaches a tipping point.

Why does the shift to Agile and DevOps make test automation imperative?

Automate Testing
for Fast Feedback

CHAPTER 5

9 Capgemini, Sogeti, HP, “World Quality Report” 2014-2015 (https://www.capgemini.com/resources/world-quality-re-
port-2014-15/).
10 CollabNet VersionOne, “13th Annual State of Agile Report” 2019 (https://www.stateofagile.com/).

44

Enterprise Continuous Testing

• There’s less time available to test: Modern application development
involves releasing increasingly complex and distributed applications
on increasingly tight timelines. It’s just not possible to complete the
required scope and complexity of testing “in sprint” without careful
test design and a high degree of automation. Manual test cycles take
weeks. This doesn’t align with today’s cadences, where 2-week sprints
and (at least) daily builds have become the norm—and the trend is
now edging towards Continuous Delivery.

• Teams expect continuous, near-instant feedback: Agile and
DevOps teams expect feedback to be delivered continuously through-
out the release cycle. This just isn’t possible with manual testing—
even if you hire an entire army of manual testers (which would be
exorbitantly expensive, by the way). Without fast feedback on how
the latest changes impact core end-to-end transactions, accelerated
delivery puts the user experience at risk with each and every release.

• Business expectations are dramatically different: As companies
prioritize Digital Transformation initiatives, the old adage of “speed,
cost, quality…pick two” no longer applies. Amidst pressure to stabi-
lize (and even reduce) costs, IT leaders are now expected to deliver
more innovative applications faster than ever. Today, everyone from
the CEO down recognizes that skimping on quality inevitably leads
to brand erosion as well as customer defection. In regulated indus-
tries, the repercussions of subpar quality are even more severe.

Most organizations already understand that test automation is essential for
modern application delivery processes. They’re just not sure how to make
it a reality in an enterprise environment—without exorbitant overhead and
massive disruption.

You can’t really blame them. Although there’s no shortage of test automa-

45

5. Automate Testing for Fast Feedback

tion success stories floating around software testing conferences, webinars,
and publications, they primarily feature developers and technical testers
that 1) are focused on testing simple web UIs and 2) have had the luxury of
building their applications and testing processes from the ground up in the
past few years. Their stories are compelling—but not entirely relevant for
the typical Global 2000 company with heterogeneous architectures, com-
pliance requirements, and quality processes that have evolved slowly over
decades.

Test Automation Reality vs. Target

Before diving deeper into test automation, let’s clarify what we’re talking
about here. Many types of tests can (and should) be automated. For exam-
ple:

• Unit tests that check a function or class (programming units) in
isolation

• Component tests that check the interactions of several units in the
context of the application

• Functional validation tests that determine whether a specific re-
quirement is satisfied

• End-to-end functional tests that exercise “end-to-end” business
transactions across multiple components and applications from the
user perspective (UI or API layer)

• Performance tests that measure an application’s reliability, scalabili-
ty, and availability under load—at any of the above levels

This book focuses on functional validation and end-to-end functional tests.
Yet, most reports of “test automation rates” include all types of test auto-
mation—including unit test automation, which is commonly practiced by
developers (more on unit testing later, in Appendix B).

46

Enterprise Continuous Testing

At Tricentis, we’ve found that companies initially report that they have au-
tomated around 18% of the end-to-end functional tests they have designed
and added to their test suite. It’s actually much lower when you consider
how many tests are actually running on a regular basis. And, when you
focus on Global 2000 enterprises, it drops even further to a dismal 8%.11

The World Quality Report, which is based on 1,600 interviews drawn pri-
marily from companies with 10,000+ employees, also reports test automa-
tion rates below 20%:

“The level of automation of testing activities is still very low (between 14-
18% for different activities). This low level of automation is the number-one
bottleneck for maturing testing in enterprises.” 12

Whichever source you choose, the bottom line is the same: there’s a huge
gap between where we are and where we need to be.

Where should we be? Forrester Research reports that Continuous Testing
requires test automation rates to be much higher: “As a rule of thumb, man-
ual testing should account for less than 20% of the overall testing activity;
automated testing should account for more than 80%.”13

This leads to what I call “the Continuous Testing rainbow”:

11 Tricentis research conducted from 2015-2018.
12 Capgemini, Sogeti, HPE, World Quality Report 2018-19, 2019 (https://www.capgemini.com/service/world-quality-re-
port-2018-19/).
13 Diego lo Giudice, The Forrester Wave: Modern Application Functional Test Automation Tools, 2016 (https://www.forrester.
com/report/The+Forrester+Wave+Modern+Application+Functional+Test+Automation+Tools+Q4+2016/-/E-RES123866)

47

5. Automate Testing for Fast Feedback

To enable Continuous Testing, automation rates need to exceed 85%. The
only remaining manual tests should be exploratory tests, and the type of
automation should shift as well. Automation should focus predominantly
on the API or message level, requiring service virtualization to simulate the
many dependent APIs and other components that are not continuously
available or accessible for automated end-to-end testing. UI test automa-
tion will not vanish, but it will no longer be the focal point of automation.

Before exploring what’s needed to reach this ideal state, let’s take a look at
why there’s such a gap in the first place.

Why is Test Automation So Hard?

Many organizations have experimented with test automation: typically, au-
tomating some UI tests and integrating their execution into the Continu-
ous Integration process. They achieve and celebrate small victories, but the

5.1 and 5.2

API

UI

Exploratory Tests

Automated UI Tests

Today Future

API Tests

Orchestrated Service Virtualization
- key enabler for high automation rates -

+85%
80%

20%

48

Enterprise Continuous Testing

process doesn’t expand. In fact, it ultimately decays. Why? It usually boils
down to roadblocks that fall into the following categories:

• Time and resources
• Complexity
• Trust
• Stakeholder alignment
• Scale

Time and Resources
Teams severely underestimate the time and resources required for sustain-
able test automation. Yes, getting some basic UI tests to run automatically
is a great start. However, you also need to plan for the time and resources
required to:

• Determine what to test and how to test it
• Establish a test framework that supports reuse and data-driven test-

ing—both of which are essential for making automation sustainable
over the long term

• Keep the broader test framework in sync with the constantly-evolv-
ing application

• Execute the test suite—especially if you’re trying to frequently run a
large, UI-heavy test suite

• Review and troubleshoot test failures—many of which are
“false positives” (failures that don’t indicate a problem with the ap-
plication)

• Determine if each false positive stems from a test data issue, a test
environment issue, or a “brittle” script (e.g., a test that’s overly-sen-
sitive to expected application changes, like dynamic name and date
elements)

• Add, update, or extend tests as the application evolves; the more
“bloated” your test suite is (e.g., with a high degree of redundancy
and low level of reuse), the more difficult it will be to update

49

5. Automate Testing for Fast Feedback

• Determine how to automate more advanced use cases and keep them
running consistently in a Continuous Testing environment

• Review and interpret the mounting volume of test results

Complexity
It’s one thing to automate a test for a simple “create” action in a web ap-
plication (e.g., create a new account and complete a simple transaction
from scratch). It’s another to automate the most business-critical transac-
tions, which typically pass through multiple technologies (mobile, APIs,
SAP, mainframes, etc.) and require sophisticated setup and orchestration.
To realistically assess the end-to-end user experience in a pre-production
environment, you need to ensure that:

• Your testing resources understand how to automate tests across all
the different technologies and connect data and results from one
technology to another

• You have the stateful, secure, and compliant test data required to set
up a realistic test as well as drive the test through a complex series of
steps—each and every time the test is executed

• You have reliable, continuous, and cost-effective access to all the de-
pendent systems that are required for your tests—including APIs,
third-party applications, etc. that may be unstable, evolving, or ac-
cessible only at limited times

Trust
The most common complaint with test results is the overwhelming number
of false positives that need to be reviewed and addressed. When you’re just
starting off with test automation, it might be feasible to handle the false
positives. However, as your test suite grows and your test frequency increas-
es, addressing false positives quickly becomes an insurmountable task.

Once you start ignoring false positives, you’re on a slippery slope. Develop-
ers start assuming that every issue exposed by testing is a false positive—and

50

Enterprise Continuous Testing

testers need to work even harder to get critical issues addressed. Moreover,
if stakeholders don’t trust test results, they’re not going to base go/no-go
decisions on them.

Stakeholder Alignment
Back in Chapter 1, I said that Continuous Testing involves providing the
right feedback to the right stakeholder at the right time. During the sprint,
this might mean alerting the developers when a “small tweak” actually has a
significant impact on the broader user experience. As the release approach-
es, it might mean helping the product owner understand what percentage
of the application’s risks are tested and passing. Yet, most teams focus on
measuring non-actionable “counting” metrics, such as number of tests, that
are hardly the right feedback for any stakeholder—at any time.14

Scale
Most test automation initiatives start with the highest-performing teams in
the organization. It makes sense. They’re typically the most eager to take on
new challenges—and the best prepared to drive the new project to success.
Chances are that if you look at any organization with pockets of test au-
tomation success, you will find that it’s achieved by their elite teams. This
is a great start…but it must scale throughout the entire organization to
achieve the speed, accuracy, and visibility required for today’s accelerated,
highly-automated software delivery processes.

Bridging the Gap

How can everyone—including mature companies with complex systems—
bridge the gap to achieve the required level of automation, reaching the ide-
al >85% test automation rate at the end of the Continuous Testing rainbow
(shown on page 47)? The fast answer is: it depends.

14 Forrester Research, Forrester Research on DevOps Quality Metrics that Matter, 2019 (https://www.tricentis.com/
devops-quality-metrics)

51

5. Automate Testing for Fast Feedback

Next, I’ll outline the top four strategies that have helped many Global
2000 organizations finally break through the “test automation” barrier after
many years of trying:

1. Simplify automation across the technology stack
2. End the test maintenance nightmare
3. Shift to API testing whenever feasible
4. Choose the right tool(s) for your needs

As you read through them, it’s critical to recognize that there is no sin-
gle “right approach” that suits every department in every organization. For
each of the top strategies, I’ll point out some considerations that could
impact its importance in your organization.

Let’s look at each of these four strategies in turn.

Simplify Automation Across
the Technology Stack

Traditional approaches to test automation rely on script-based technologies.
Before automation can begin, a test automation framework must be devel-
oped. Once the framework is finally implemented, tested, and debugged,
test scripts can be added to leverage that framework. As the application
evolves, these test scripts—and the test automation framework itself—also
need to be reviewed, potentially updated, and debugged.

Often, significant resources are required to ramp up test automation for
just a single technology (e.g., a web UI or mobile interface). This could
include training existing testers on the specific scripting approach you’ve
selected, reallocating development resources to testing, and/or hiring new
resources who have already mastered that specific approach to script-based

52

Enterprise Continuous Testing

test automation. Even testers who are well-versed in scripting find that
building, scaling, and maintaining test automation is a tedious, time-con-
suming task. It’s often a distraction from testers’ core competency: applying
their domain expertise to identify issues that compromise the user experi-
ence and introduce business risks.

If you have a heterogeneous application stack to test (for example, pack-
aged applications such as SAP/Salesforce/ServiceNow/Oracle EBS + APIs+
ESBs + mainframes + databases + web and mobile front ends), multiple
frameworks will need to be learned, built, and linked in order to automate
an end-to-end test case. Selenium—by far the most popular of all modern
test automation frameworks—focuses exclusively on automating web UIs.
For mobile UIs, you need Appium, a similar (but not identical) framework.
Also testing APIs, data, packaged applications, and so forth? That means
that even more tools and frameworks need to be acquired, configured,
learned, and linked together.

Now, let’s take a step back and remember the ultimate goal of automation:
speeding up your testing so that the expected testing can be performed as
rapidly and frequently as needed. To achieve this, you need a test automa-
tion approach that enables your testing team to rapidly build end-to-end
test automation for your applications. If your testing team is made up of
scripting experts and your application is a simple web app, Selenium or free
Selenium-based tools might be a good fit for you. If your team is dominat-
ed by business domain experts and your applications rely on a broader mix
of technologies, you’re probably going to need a test automation approach
that simplifies the complexity of testing enterprise apps and enables the
typical enterprise user to be productive with a minimal learning curve.

You might find that different parts of your organization prefer different
approaches (e.g., the teams working on customer-facing interfaces such as
mobile apps might not want to use the same testing approach as the teams
working on back-end processing systems). That’s fine—just ensure that all

53

5. Automate Testing for Fast Feedback

approaches and technologies are connected in a way that fosters collabora-
tion and reuse while providing centralized visibility.

End the Test Maintenance Nightmare

Maintenance is the first—and most formidable—of what I call the three
nightmares of test automation. (The other two nightmares are test data and
test environments—both of which are covered in the next chapter).

If your tests are difficult to maintain, your test automation initiative will
fail. If you’re truly committed to keeping brittle scripts in check, you’ll sink
a tremendous amount of time and resources into test maintenance—erod-
ing the time savings promised by test automation and making testing (once
again) a process bottleneck. If you’re not 100% committed to maintaining
tests, your test results will be riddled by false positives (and false negatives)
to the point that test results are no longer trusted.

Maintenance issues stem from two core problems:

1. Tests that are unstable
2. Tests that are difficult to update

 The key to resolving the instability issue is to find a more robust way of ex-
pressing the test. If your automated test starts failing when your application

Key Considerations: This strategy is most important for testing in
complex enterprise environments that involve multiple technolo-
gies—for example, packaged apps (SAP, Salesforce, etc.) + APIs +
ESBs + web + mobile. The more different interfaces you are testing,
the more you should prioritize this. If you are a small team testing a
single interface, this probably is not an issue for you.

54

Enterprise Continuous Testing

hasn’t changed, you’ve got a stability problem on your hands. There are a
number of technical solutions for addressing this when it occurs (e.g., using
more stable identifiers). These strategies are important to master. However,
it’s also essential to consider test stability from the very start of your test au-
tomation initiative. When you’re evaluating test automation solutions, pay
close attention to how the tool responds to acceptable/expected variations
and how much work is required to keep the tool in sync with the evolving
application. Also, recognize that even the most stable tests can encounter
issues if they’re being run with inappropriate test data or in unstable or incom-
plete test environments. I’ll cover that in the next chapter.

To address the updating issue, modularity and reuse are key. You can’t af-
ford to update every impacted test every time that the development team
improves or extends existing functionality (which can now be daily, hourly,
or even more frequently). For the efficiency and “leanness” required to keep
testing in sync with development, tests should be built from easily-updat-
able modules that are reused across the test suite. When business processes
change, you want to be able to update a single module and have impacted
tests automatically synchronized.

Effective test case design (covered in Chapter 4) is essential for getting—
and keeping—both of these potential issues under control. As I said then,
“less is more”: you want just enough tests so that when a test fails, you
know exactly what application functionality to investigate. With test case
design methodologies like linear expansion, the team knows exactly which
tests need to be added as the application evolves. This saves time in both the
short term (fewer tests need to be added in each sprint) and the long term
(fewer tests fail and require maintenance over the application’s lifespan).
If you have a combinatorial explosion of tests, ensuring test suite stability
and keeping tests up-to-date will inevitably be a Sisyphean task—no matter
what approach and technologies you use.

55

5. Automate Testing for Fast Feedback

Shift to API Testing

Today, UI testing accounts for the vast majority of functional test auto-
mation—with only a small fraction of testing being conducted at the API
level. However, a second look at the Continuous Testing Rainbow shows
that we need to reach a state that’s essentially reversed:

5.1 and 5.2

API

UI

Exploratory Tests

Automated UI Tests

Today Future

API Tests

Orchestrated Service Virtualization
- key enabler for high automation rates -

+85%
80%

20%

Key Considerations: This strategy is most important for 1) teams
hoping to achieve high levels of automation and 2) teams work-
ing with actively-evolving applications. If you’re trying to automate
a few basic tests for a relatively static application, you might have
sufficient time and resources to address the required maintenance.
However, the more test automation you build and/or the more fre-
quently the application is changing, the sooner test maintenance will
become a prohibitive nightmare. Also, fast-growing and high-turn-
over teams are more vulnerable to “test bloat”: an accumulation of
redundant tests that add no value in terms of risk coverage but still
require resources to execute, review, and update. Focusing on reuse
and applying the test design strategies outlined in Chapter 4 will
keep bloat to a minimum.

56

Enterprise Continuous Testing

15 Moreover, with service virtualization simulating APIs that are not yet completed, you can “shift left” testing even further with
a TDD approach. Service virtualization is covered in the next chapter.
16 Tricentis research conducted from 2015-2018 at Global 2000 companies—primarily across finance, insurance, telecom,
retail, and energy sectors.

Why? API testing is widely recognized as being much more suitable for
modern development processes because:

• Since APIs (the “transaction layer”) are considered the most stable
interface to the system under test, API tests are less brittle and easier
to maintain than UI tests

• API tests can be implemented and executed earlier in each sprint
than UI tests15

• API tests can often verify detailed “under-the-hood” functionality
that lies beyond the scope of UI tests

• API tests are much faster to execute and are thus suitable for check-
ing whether each new build impacts the existing user experience

In fact, Tricentis’ recent studies have quantified some of the key advantages
of using API testing versus UI test automation:16

Task UI Test
Automation

API
Testing

Factor

 Set-up 100% 25% 4x

 Maintenance 100% 16% 6x

 Runtime 100% <1% 100+ x

Timing Regressive Progressive

This leads to my recommended take on the test pyramid:

57

5. Automate Testing for Fast Feedback

The red tip of the pyramid indicates the role that manual testing (typically
via exploratory testing—more on this in the next chapter) is best suited to
play in modern development processes. The green band represents what
we’ve found to be the “sweet spot” for UI test automation. The vast major-
ity of the triangle is covered by API testing, which builds upon develop-
ment-level unit testing.

From a practical standpoint, how do you determine what should be tested
at the API layer and which tests should remain at the UI layer? The general
rule of thumb is that you want to be as close to the business logic as possi-
ble. If the business logic is exposed via an API, use API tests to validate that
logic. Then, reserve UI testing for situations when you want to validate the
presence/location of UI elements or functionality that is expected to vary
across devices, browsers, etc. In parallel, developers can (and should) be
testing the API’s underlying code at the unit level to expose implementa-
tion errors as soon as they are introduced.

 Your “Test Pyramid” Might Be a Diamond
Over time, the test pyramid actually erodes into a diamond. Appen-
dix B explains why the bottom falls out, making the pyramid unsta-
ble. It also shares what you can do to prevent this.

UAT
UI Test Automation

System
Integration Tests

Integration Tests

Unit Tests

Manual Testing

API Test Automation

58

Enterprise Continuous Testing

Choose the Right Tool(s) for Your Needs

There’s no shortage of open source and free test automation tools on the
market. If you’re introducing test automation into a small team testing a
single web or mobile interface—or isolated APIs— you can very likely find
a free tool that will help you get started and achieve some impressive test
automation gains.

On the other hand, if you’re a large organization testing business transac-
tions that pass through SAP, APIs, mainframes, web, mobile, and more,
you need a test automation tool that will simplify testing across all these
technologies—in a way that enables team members to efficiently reuse and
build upon each other’s work.

To help you compare commercial and/or open source testing tools based
on your top criteria, Tricentis prepared a fully-customizable testing tool
comparison matrix. You can enter your own scoring for each tool, specify
how you want to weight various criteria, and even factor in additional cri-
teria that are important to your team/organization. You can download it at
https://www.tricentis.com/CTbook.

However, before you focus on selecting a tool, consider this: the greatest
mistake that organizations make with test automation initiatives is think-
ing that acquiring a test automation tool is the most important step in

 Key considerations: Obviously, if the functionality you’re tasked
with testing is not exposed via APIs, this is not a viable strategy for
you. For example, if you’re testing an SAP application that’s not le-
veraging APIs, API testing simply isn’t an option. You need to ensure
test repeatability and stability in another way.

59

5. Automate Testing for Fast Feedback

adopting test automation. Unfortunately, it’s not that easy. No matter
which tool you select, it’s absolutely essential that you regard it as just one
component of a much broader transformation that touches process, people,
and technologies.

Model-Based Test Automation: The Fast
Track to Sustainable Test Automation

All the strategies I’ve presented throughout this chapter are applicable
across test automation technologies. However, I’d be remiss if I didn’t in-
troduce Model-Based Test Automation and explain why I firmly believe it’s
the perfect solution for enterprises ramping up test automation. This is a
topic I’m extremely passionate about. For me, it’s personal.

Almost two decades ago, I joined forces with three colleagues to provide
IT-related services for insurance companies across Austria. We performed a
small amount of software development, but our primary focus was software
quality assurance. In 1999, one of the world’s largest insurers asked our

Key considerations: Cost is undeniably a factor in every tool acqui-
sition decision. Be sure to consider the total cost of ownership—in-
cluding what’s required to train and ramp up your existing resources
(or hire additional ones), build test frameworks, build and maintain
tests, and so on. Also, recognize that it’s fully feasible (and often
valuable) to have different teams using different tools. A small team
creating a mobile app for your annual corporate event does not need
to use the same tool as the team testing how your SAP-based busi-
ness critical transactions are impacted by frequent upgrades. “Single
pane of glass” reporting provides centralized visibility while allowing
each team and division to choose the best tool for their needs.

60

Enterprise Continuous Testing

company to help them adopt test automation. After trying out all the tools
on the market, we settled on SQA Robot (later acquired by Rational, then
IBM). However, after a 10-day honeymoon phase, we fell right into the
maintenance trap that still afflicts test automation efforts today. Creating
test cases was simple (for someone with my technical background, at least),
but maintaining them was a nightmare that required a significant amount
of time and technical programming. It was immediately clear that the cli-
ent’s testing team could never keep up with all the maintenance required,
so I decided to write an abstraction layer.

This approach to test automation was a success from the start, and the cli-
ent rapidly ramped up test automation. Over the next few years, we saw an
increasing demand for this tool across enterprise clients throughout Austria
and Switzerland. After their initial test automation initiatives failed (they
were always caught in the maintenance trap), the companies reached out
to us—seeking a different, more sustainable approach to test automation.

By 2003, we recognized that there was a real need for this particular “busi-
ness abstraction layer” testing technology. We also realized that it could
thrive on the software testing market—beyond the scope of the IT services
we were personally delivering. To make a long story short, we dedicated tre-
mendous research and development resources into advancing this technol-
ogy and pairing it with a modern automation engine. Today, the outcome
of all this R&D is known as “Model-Based Test Automation”—the core
technology that Tricentis is recognized for.

What is Model-Based Test Automation?
Model-Based Test Automation (MBTA) is architected to enable anyone
from developers to business experts to contribute to test automation—while
eliminating the maintenance burden that erodes most test automation ini-
tiatives. Instead of programming a test automation framework, you scan
the application’s UI or API to create a business-readable automation model.

61

5. Automate Testing for Fast Feedback

App

Automate App

Extract Model Create Test Cases

Feed Test Data

Model Test Cases

Technical
Information

SUT
System Under Test

Business
Information

These models provide Lego-like “building blocks” that can be combined
and reused to create your tests. If your application changes (e.g., a field is
added or removed), you just update the model, and the change is automat-
ically propagated to all impacted tests.

The key principles of the Model-Based Test Automation approach are:

Abstract the Automation Details Into Business-Readable Modules
Instead of programming a test automation framework, you scan the appli-
cation’s interface (UI or API) to create an automation model. This auto-
mation model contains the information needed to exercise the application
under test. One “module” is created to locate and interact with each of the
UI elements, API operations, etc. that are relevant for your testing.

Each module is represented in human-readable language. For example, as-
sume you are trying to automate a checkbox like this:

A traditional automation script might represent it as something like
 CheckBox Click,

 “/usr/cntlCONTAINER/shellcont/shell[2]/chbx[1,3]”

* Yes, I agree to receive periodic communications, emails and promotional materials
from Tricentis related to products and services and can unsubscribe at any time.

62

Enterprise Continuous Testing

 With Model-Based Test Automation, it would be represented as something
like:

In terms of emphasizing abstraction and reuse, it’s actually a lot like ob-
ject-oriented programming. Being able to work at this high level makes the
test creation process much faster and less error-prone.

Separate the Automation Details, Test Logic, and Test Data
With a clear separation between automation details (e.g., “steering”), test
logic, and test data, the impact of each change is isolated to a single com-
ponent. The test logic and test data are injected into the automation model
at runtime—guaranteeing that tests never use old versions of test data or
access outdated technical definitions.

For example, if your loan approval service was reimplemented using a new
back-end technology, your test cases wouldn’t need to change at all. Only
the automation details would be impacted. If you wanted to increase your
risk coverage by validating more advanced use cases, you could test differ-
ent test flows, conditions, and sequences without having to change any
automation details. And if you needed to update your data set (e.g., to
comply with data privacy regulations such as GDPR), you could achieve
this without ever touching your automation details or test logic.

Maximize Reuse
Test cases are created by combining the modules (building blocks repre-
senting the various interface elements) into logical test scenario sequences.
A single module can be used in any number of test cases. If the associated

63

5. Automate Testing for Fast Feedback

interface element later changes (for example, a new checkbox was added to
your signup form), you only need to update the impacted module once.
The change will automatically be propagated to all the test cases which use
that module. Moreover, test logic is also reusable. Since the test logic is sep-
arate from the automation details, teams can reuse the same test logic across
different interfaces or technologies (mobile, cross-browser, etc.). Likewise,
the same data can also be applied across different technologies.

Enable Standardization and Flexibility
Modules are built and used in a standard way whether they represent SAP,
mobile, APIs, custom applications, etc. This means that once a tester is
familiar with Model-Based Test Automation for one technology (say, web
UI test automation), it’s extremely simple for that same person to apply the
same concepts to all other technologies that need to be tested (for example,
mobile, SAP, APIs, etc.) Moreover, since all different types of modules can
be mixed and matched within a single test case, the test logic can easily
mimic the flow of realistic end-to-end user transactions across today’s high-
ly-distributed systems.

Model-Based Test Automation for Agile and DevOps
I could go on and on about Model-Based Test Automation. For the purpose
of this book, let’s focus on how it helps Global 2000 companies achieve
the fast, flexible, and sustainable test automation required for Agile and
DevOps:

• Model-Based Test Automation ensures that the constant change typ-
ical of modern fast-paced development processes does not cause a
test maintenance nightmare.

• Testers are empowered to complete the expected level of testing
within the extremely compressed test windows that are fast-becom-
ing the norm.

64

Enterprise Continuous Testing

• Flaky tests don’t block builds when testing is used as a quality gate
during Continuous Integration and throughout DevOps pipelines.

• Since programming/scripting experience is not required, you don’t
need to wait on programming resources to assist with test automa-
tion. Testers of all levels, business analysts, and other subject matter
experts can contribute to the test automation effort.

In a sense, this is the low-code/no-code software development approach
applied to software testing. Organizations have already recognized that
low-code/no-code development is an efficient way to satisfy the relentless
demand for more software, faster. It helps enterprise organizations deliver
software as efficiently as startups by maximizing reuse and minimizing the
need for hand-coding. Freed from the complexities of low-level implemen-
tation details, teams can move fast and focus on the high-level, strategic
work that adds business value. This is exactly what Model-Based Test Au-
tomation aims to enable.

65

6. Completing the Continuous Testing Puzzle

Up to this point, we’ve covered how to:

• Prioritize requirements by risk—so you can test the top business
risks first

• Design tests that cover your risks as efficiently as possible
• Automate tests rapidly, with minimal maintenance
• See the risk impact of your test failures
• Identify critical “blind spots” that are not yet tested

By putting these strategies into practice, you’ll make great strides towards
the rapid, business-focused feedback critical for Agile and DevOps. But
more is needed to provide this feedback continuously, and to ensure that
it’s available for your advanced use cases as well as your basic ones. This is
where practices like test data management and service virtualization come
into play.

Moreover, while functional test automation is a core component of Con-
tinuous Testing, it’s just one component. Of course, we need to know if a
certain series of inputs and actions produces the expected results.

Completing the
Continuous Testing Puzzle

CHAPTER 6

66

Enterprise Continuous Testing

But what if the functionality is so slow—or so frustrating to use—that
impatient customers decide to try a competitor? Exploratory testing and
load testing can help you realistically assess and optimize the end-users’
experience with your application.

Test Data Management

Test data management (TDM) is one of the critical capabilities that helps
an organization evolve automated tests to continuous tests. It’s impossi-
ble to achieve a mature Continuous Testing process unless you have an
effective, tightly-integrated way to create, manage, and provision the data
required for your tests. A successful TDM strategy is required for both
end-to-end regression testing as well as load testing (covered later in this
chapter).

However, obtaining and applying appropriate test data has always been
challenging. It’s especially tricky when you’re testing complex scenarios—
for example, when an account must be in a certain state before you can ex-
ercise some core functionality, or when order status changes multiple times
throughout the course of a single transaction. And the more frequently you
run tests (think of testing integrated into CI), the more difficult it becomes
to ensure that the tests have access to the necessary range of fresh, unex-
pired test data.

Today, data privacy regulations like GDPR are further complicating an al-
ready-complex situation by forcing companies to abandon the most com-
mon test data management approach: using test data extracted from pro-
duction environments.

Let’s look at each of these challenges—stateful test data and secure, compli-
ant test data—in turn.

67

6. Completing the Continuous Testing Puzzle

Stateful Test Data
One of the greatest challenges associated with test data management is set-
ting up and manipulating stateful data. Stateful test data not only produces
the specific application conditions that are required to set up a realistic test;
it also enables you to drive the test through a complex series of steps.

For example, imagine you want to test the reversal of fraudulent charges on
a credit card account. First, you’d need to get the account into the “state”
where an account was created and had a history of charges. Then, the test
would need to indicate that certain charges were fraudulent and reduce the
amount due accordingly.

How do you achieve this? By registering the change of states in your test
data management repository—where it can then be retrieved by the next
step, which might cause another change of state, and so on and so on. Call-
ing the same data reference (for instance, account status) at multiple points
in a process might yield different results, based on what value is appropriate
at each phase.

Read test data
to use as basis

Automated
Test Case

System
Under Test

Test Data
Management

Test the
SUT

Register test
data changes

68

Enterprise Continuous Testing

Secure, GDPR-Compliant Test Data
There are two main ways to ensure that your test data complies with data
privacy regulations like GDPR: masking production data and using syn-
thetic test data.

Most organizations get their test data from production data because (1) it’s
available and (2) it’s known to be realistic. However, GDPR means that
production data can no longer be used as is if it contains any private data
from any EU residents. Now, that data must be masked irreversibly and
deterministically (i.e., the same way across all instances).

Another option is to synthetically generate the test data that you need.
The fact that it’s completely fake means that GDPR compliance becomes
a nonissue. However, fake data can only get you so far. You can typically
achieve high (though not perfect) risk coverage using synthetic test data
alone. However, synthetic test data generation sometimes falls short when
data objects with a long history are required for testing. For example, it
might be difficult, or even impossible, to provide a 40-year life insurance
contract that was signed 25 years ago. This type of legacy data typically
needs to be extracted from production because it’s not easily generated.

Automated test cases change test data status

69

6. Completing the Continuous Testing Puzzle

Fortunately, this limitation is narrow in scope. For example, Tricentis’ re-
search has found that in retail, synthetic test data can usually achieve 98%
risk coverage. The coverage for telecoms is also high: 96%. With insurance
and banks, it’s a little lower, but still greater than 90%.17

Ultimately, you’ll want to use both masked production data and syntheti-
cally-generated test data to address your various testing needs:

• Masked production data provides easy access to realistic test data.
Extracting data from production and then masking it to meet GDPR
privacy requirements can be a fast way to cover your most common
use cases.

• Synthetically-generated data enables broader coverage and nega-
tive testing. It lets you simulate data types and ranges that might be
difficult to find in production data.

My recommendation is to use synthetically-generated test data as much as
possible, then fill in the gaps with masked production data. You’ll dramat-
ically reduce the amount of test data that falls under the scope of GDPR.

Create test data
on demand

Extract & mask data
irreversibly & deterministic

Masked
Production Data

Synthetic
Test Data

Test Data
Management

Test Data Management

Test Data
Provisioning

Provide stateful test data (object) management seamlessly
integrated into test case design & execution

17 Tricentis research conducted from 2015-2018 at Global 2000 companies—primarily across finance, insurance, telecom,
retail, and energy sectors.

70

Enterprise Continuous Testing

DevOps Toolchain Integration

Modern development teams are adopting a diverse assortment of tools to
automate and optimize the software delivery pipeline. In response, today’s
toolchains now include best-of-breed tools that span numerous capabilities,
product vendors, and team roles. The more effectively these tools integrate
and interact, the more effectively team members can work and collaborate.

Tightly integrating testing activities with a best-of-breed DevOps toolchain
fosters efficiency and collaboration. Integration with the organization’s CI
systems of choice is essential for making testing a seamless part of the de-
livery pipeline. You can directly integrate any modern testing platform into
CI tools, or you can connect to a dedicated test management platform that
orchestrates execution along with test management, tracking, and report-
ing. Additionally, technology to accelerate test execution (e.g., via distribut-
ed execution, fault recovery, etc.) can help you get more testing completed
in the available time.

Service Virtualization

Shortly after you build your initial automated test suite and start executing
it regularly—potentially as part of a CI effort—your dependencies are like-
ly to create a roadblock. Your tests will expect the application’s dependent
system components (APIs, third-party applications, etc.) to be available in
the test environment during every execution. However, with complex en-
terprise systems, at least some of the many required dependencies are prob-
ably incomplete, unavailable, or operating incorrectly at the time of test
execution. Some might have changed versions, and others might be using
inaccurate or expired test data. The result is timeouts, incomplete tests, false
positives, and inaccurate results—preventing you from delivering the fast
quality feedback expected with test automation.

71

6. Completing the Continuous Testing Puzzle

Service virtualization can help you get past these roadblocks and increase
test automation rates.

What Is Service Virtualization?
Service virtualization is a simulation technology that lets you automatically
execute tests, even when the AUT’s dependent system components (APIs,
third-party applications, etc.) cannot be properly accessed or configured for
testing. By simulating these dependencies, you can ensure that your tests
will encounter the appropriate dependency behavior and data every time
they execute.

Service virtualization is commonly used when integration tests or end-to-
end tests need to interact with dependent system components that are:

• Unreliable, evolving, or not yet completed
• Beyond your scope of control (e.g., operated by another company

or division)
• Available for testing only in a limited capacity or at inconvenient

times
• Challenging to provision or configure in a test environment
• Simultaneously needed by different teams with varied test data set-

ups and other requirements
• Too restricted or costly to use for automated regression testing

Stabilizing Automated Tests
For automated tests to execute successfully, all the dependent systems must
be available with the appropriate configuration, functionality, and test
data—all at the same time, every time the automated test suite executes.
This is a tremendous challenge.

When an automated test suite’s execution is impeded by timeouts, incom-
plete tests, false positives, or other testing problems, it’s often a symptom

72

Enterprise Continuous Testing

of test environment stability issues. With service virtualization, you can
stabilize access to dependent systems so that tests can execute completely,
reliably, and continuously.

For example, assume that you need to execute an end-to-end test that in-
teracts with an order processing system beyond your immediate control.
However, that order management system is continually being upgraded
with new functionality that’s irrelevant to your tests. As a result of those
frequent updates, that dependency is often unavailable or unstable.

If you use service virtualization to simulate the small sliver of behavior
and data that’s required to execute your tests, you eliminate the risk of de-
pendency issues interfering with your automated test execution. The more
your tests are isolated from the various dependencies they interact with,
the greater the chance that your automated test execution will proceed as
planned.

By simulating dependencies in this manner, you can also trust that your
test failures stem from issues with your AUT, not problems with your test
environment; and you can reliably re-create the test environment for defect
reproduction or bug fix validation.

Touchpoints /
Frontends

Billing

Provisioning

ESB / SOA
Layer

Offering

Ordering

73

6. Completing the Continuous Testing Puzzle

Automating Complex Test Scenarios
Once the initial automated test suite is running like a fine-tuned machine,
the next goal is often to automate more advanced test cases. However, it
can be considerably more challenging to eliminate dependency issues for
complex scenarios that involve stateful transactions than for simpler test
cases that simply search for data or add a new object.

For example, assume you are responsible for testing an account manage-
ment system that interacts with a CRM beyond your scope of control. You
might need to test a scenario that:

1. Loads an existing customer account and checks that pricing details
are appropriate for their current address

2. Pays the customer’s full account balance based on their current ad-
dress

3. Changes the customer’s address to a more expensive area
4. Reloads the customer’s account details and validates that the pricing

details are updated appropriately based on the new address
5. Validates that a) an additional amount due is added to the customer’s

account, and b) the account status changes from “paid in full” to
“payment due”

With traditional service virtualization approaches, it would be difficult to
simulate the dependencies involved in executing this test case. But this is
where orchestrated service virtualization—a special type of testing that is
driven from the perspective of the test—shines.

Here, it lets you accurately simulate the various stateful customer account
updates so that you can test without having to actually interact with (or
configure) the back-end CRM system. It can also eliminate any associated
system delays (e.g., waiting for the address update to enter the system and
the pricing details to update), which could otherwise introduce a bottle-
neck into the automated testing process.

74

Enterprise Continuous Testing

Basic service virtualization scenario:

Advanced service virtualization scenario:

Orchestrated service virtualization is sometimes called test-driven service
virtualization because it focuses on simulation from the perspective of the
test and places the tester at the center of service virtualization asset creation
and management.

Customer
OK

Rating

Analyze Request

Generate Response

Analyze Request

Generate Response

Customer Service

Order
Service

Order
Service

Order
Service

OK

Back-End
Systems

App Insurance

Save Person

Successful

Save Order
Save Person

Save Order

Change state

Reload Order

Order saved, provide new Order ID

Confirm Order state, e.g. pending - confirmed

Ok, State changed

Reload full Order

OK, provide Order Data

75

6. Completing the Continuous Testing Puzzle

Service virtualization also provides a simple way to test how your AUT
behaves against edge cases and error conditions that would be difficult to
configure in a staged test environment. For example, assume that your ac-
count management system interacts with multiple dependent systems (a
CRM, location system, and order processing system), and you want to
automate tests that validate how your AUT reacts when different combi-
nations of dependent systems are down, delayed, or behaving incorrect-
ly. Or, assume that you want to automate a test that validates how your
AUT reacts when its expected messages are sent or received in an incorrect
order. Service virtualization helps you simulate these conditions so that you
can automate the broad range of tests required to effectively cover your
risks.

Ensuring Fast, Quality Test Feedback
If you can guarantee that all the dependent systems associated with your
end-to-end tests will always be available, operating correctly, and config-
ured with appropriate test data every time your automated tests execute,
you might not need service virtualization. But for everyone else, it’s vital for
achieving the sustainable, scalable test automation required for Continuous
Testing, Agile, and DevOps.

Providing the team with fast quality feedback is one of the top goals of
test automation. The goal of service virtualization is to ensure that test
environment issues don’t impact the speed, accuracy, or completeness of
that feedback—so you can satisfy business expectations for quality at speed.

Exploratory Testing

Test automation is perfect for repeatedly checking whether incremental
application changes break your existing functionality. However, test auto-
mation falls short for determining if new functionality truly meets expecta-
tions. Does it address the business needs behind the user story? Does it do

76

Enterprise Continuous Testing

so in a way that’s easy to use, resource-efficient, reliable, and consistent with
the rest of your application?

The specification-based testing I’ve been focusing on throughout this book
checks whether expected paths through user stories are free of predictable
issues. But what about dangers lurking beyond the primary paths?

This is where exploratory testing comes in. Exploratory testing promotes
the creative testing required to answer these and other critical questions
about the viability of new functionality. Here are three reasons exploratory
testing is such a great complement to test automation in Agile and DevOps
processes.

Rapidly Expose Issues—Including Those That Might Escape Other
Testing Methods
By scouting and exploring new product territories from various perspec-
tives—without extensive planning or automation efforts—exploratory test-
ing rapidly exposes many severe defects in a short period of time. Since it
leverages human intelligence, exploratory testing gives you a broader and
deeper view than any automated test could. For example, an automated test
could tell you if a UI element worked properly, but it could not determine if
that UI element was confusing to the end user. Even if exhaustive automat-
ed testing was feasible—which it’s not in compressed Agile sprints—such
issues would still evade it. Since exploratory testing encourages branching
and, well, exploration of different stories and ideas, it uncovers different
issues than structured, predefined testing typically does.

Specification-based testing is always critical for determining whether a user
story is “done done.” Of course, you want to know whether the new func-
tionality actually does what it is expected to do. But a clean bill of health on
functional testing doesn’t mean that the functionality won’t negatively im-
pact the end user and maybe even drive them away from your application.
Understandability, usability, accessibility and other “-ities” are beyond the

77

6. Completing the Continuous Testing Puzzle

scope of automated functional testing but are often imperative for ensuring
a positive user experience.

Moreover, there is often a gap between the functionality that’s specified and
the functionality that’s actually implemented. Sometimes functionality is
specified but not implemented. Specification-based testing can catch this.
However, sometimes teams implement functionality that’s not specified—
often, as the result of a developer misinterpreting the requirements.

Tests that strictly follow the specification will not venture into this area of

Scalability Issue

Understandability
Issue

Usability Issue

Performance Issue

Stability Issue

Reliability Issue

Risks

Functional Issue

Testability Issue Convenience Issue

Accessibility Issue

Coherence Issue
Security Issue

Implemented
but not Specified

Specified but not
Implemented

Implemented
and Specified

78

Enterprise Continuous Testing

Exploratory Testing

Monitor Known Risks

Analyze Potential Risks
Think outside the system
boundaries

Think within the system

Formal
Testing

the actual product. They might not even detect that the implementation
went beyond the specification. Exploratory testing, on the other hand, is
likely to discover the unspecified-but-implemented functionality as well as
expose any critical issues within that area.

In other words, specification-based testing helps you check if expected
paths are free of predictable issues. Exploratory testing helps you discover
what dangers might be lurking beyond the primary paths.

Facilitate Cross-Functional Team Collaboration to Expose More Types
of Defects
With exploratory testing, a diverse group of people—from developers, to
product owners, to UX designers, to business analysts, to technical writ-
ers, to support engineers—can all contribute to the quality effort since no
specialized test automation or scripting knowledge is required. All these
different people each bring different specialties and different perspectives
to the table.

With a larger and more diverse group examining the application, you not
only complete more testing in less time—you also expose a broader variety
of issues and reduce the risk that a critical issue goes unnoticed. There’s
never enough time or resources to test absolutely everything.

79

6. Completing the Continuous Testing Puzzle

However, if you perform exploratory testing from many different perspec-
tives, you can get greater risk reduction from whatever time and resources
you can dedicate to testing.

Find Issues Before Automated Testing
Exploratory testing is perfect for performing a quick sanity check on new
functionality and its most prominent impacts across the application. It
helps you rapidly identify the big blockers soon after they’re introduced—
enabling the team to “fail fast” before any test automation is implemented.
If you use an exploratory testing tool to automatically record and docu-
ment your efforts, any defects found are easily reproducible.

Note that I’m not suggesting that exploratory testing is a substitute for au-
tomated testing. You still need an automated regression test suite to reliably
determine if changes compromise your existing functionality. The scope of
what you can cover with exploratory testing is a drop in the bucket com-
pared to what you can check with automated testing. Rather, I’m trying
to emphasize that exploratory testing can be a great way to uncover some
critical issues even before you’re ready for test automation.

Exploratory Testing

Exploratory Branching
Perfect counterpart to
specification-based
automated & manual testing

New testing ideas continually
occur during exploratory
testing

Test Cases vs. Scenarios
Pre-specified inputs vs.
hypothetical situation

Risks

80

Enterprise Continuous Testing

Load Testing

Today’s developers and testers don’t have the time (or desire) to wrestle
with all the technical details required to get traditional load tests working
correctly and keep brittle load tests in sync with the rapidly evolving ap-
plication.

The traditional way of approaching load testing is by scripting at the pro-
tocol level (e.g., HTTP). This includes load testing with open source tools
such as JMeter and Gatling, as well as legacy commercial tools such as
LoadRunner. Although simulating load at the protocol level has the advan-
tage of being able to generate large concurrent load from a single resource,
that power comes at a cost. The learning curve is steep, and the complexity
is easily underestimated.

Why Load Testing is (Traditionally) Such a Pain
The main culprit for this complexity is JavaScript. In 2011, there was usu-
ally less than 100 KB of JavaScript per page, which spurred around 50 or
fewer HTTP requests. Now, that’s doubled: We see an average of 200 KB
of JavaScript per page, and this gives us more than 100 requests per page.

For example, just one click on an Amazon.com page triggers something
like 163 HTTP requests processed asynchronously after page load. You
also find things such as dynamic parsing and execution of JavaScript, the
browser cache being seeded with static assets and calls to content delivery
networks. And the next time the same element is clicked, it might generate
161 requests…or 164…or 165. There will be small differences each time.

81

6. Completing the Continuous Testing Puzzle

When you start building your load test simulation model, this will quickly
translate into thousands of protocol-level requests that you need to faith-
fully record and then manipulate into a working script. You must review
the request and response data, perform some cleanup and extract relevant
information to realistically simulate user interactions at a business level.
You can’t just think like a user; you also must think like the browser.

You need to consider all the other functions that the browser is automati-
cally handling for you, and figure out how you’re going to compensate for
that in your load test script. Session handling, cookie header management,
authentication, caching, dynamic script parsing and execution, taking in-
formation from a response and using it in future requests … all of this
needs to be handled by your workload model and script if you want to
successfully generate realistic load. Basically, you become responsible for
doing whatever is needed to fill the gap between the technical and business
level. This requires both time and technical specialization.

The Future of Load Testing is BLU
To sum up the challenge here: modern web applications are increasingly

One click...

Causes 100+ requests... 163 requests fired

which will look
different every build
or even every run! =>
require re-scripting

https:

Web Server

82

Enterprise Continuous Testing

difficult to simulate at the protocol level. This raises the question: Why not
shift from the protocol level to the browser level—especially if the user’s
experience via the browser is what you ultimately want to measure and im-
prove in order to advance the business’ Digital Transformation initiatives?

When you’re working at the browser level, one business action translates to
maybe two automation commands in a browser as compared to tens, if not
hundreds, of requests at the protocol level. Browser-level functions such as
cache, cookie, and authentication/session management work without in-
tervention.

There are a number of ways to simulate traffic at the browser-level: Seleni-
um is currently the most popular, but there are a number of cross-browser
testing tools available—some of which let you test without getting into
scripting.

However, historically, it just wasn’t feasible to run these tools at the scale
needed for load testing. In 2011, if you wanted to launch 50,000 browsers
with Selenium, you would have needed around 25,000 servers to provide
the infrastructure. Moreover, it would have been prohibitively expensive
and time-consuming to provision the necessary infrastructure.

Today, with the prominent availability of the cloud and containers, the
concept of browser-based load testing is finally feasible. Suddenly, generat-
ing a load of 50,000 browsers is a lot more achievable—especially when the
cloud can now give you access to thousands of load generators that can be
up and running in minutes. Instead of having to wait for expensive perfor-
mance test labs to get approved and set up, you can get going instantly at
an infrastructure cost of just cents per hour. Instead of wrestling with 163
HTTP requests to test a simple user action, you just simulate one brows-
er-level click—which is obviously much easier to define and maintain.
Consider the number of clicks and actions in your average user transaction,
and the time/effort savings add up rather quickly.

83

6. Completing the Continuous Testing Puzzle

Fast feedback on performance is no longer just a pipe dream.

You can use open source technology like Flood Element to capture the
action in a simple, easily maintainable script. Or, if you prefer a “low-code/
no-code” approach, you can capture your test scenarios as scriptless func-
tional tests, then use those same tests to drive both load testing and func-
tional testing.

By reducing the complexity traditionally associated with load testing, BLU
load testing gives developers and testers a fast, feasible way to get immediate
feedback on how code changes impact performance. It’s designed to help
people who are not professional performance testers quickly create load
tests that can be run continuously within a CI/CD process—with minimal
maintenance.

Test Impact Analysis

In the spirit of “failing fast,” teams want CI to provide feedback on their
latest updates as soon as possible. CI test results are the primary barometer
that developers use to determine whether it’s safe to move on to the next
development task, or if they inadvertently broke functionality that users
have grown to rely on.

With more extensive and effective regression testing during CI, you’re
much more likely to spot critical problems as soon as they’re introduced—
which is when they’re fastest, easiest, and cheapest to fix. However, given
the frequency of builds in most Agile processes, there’s simply not much
time available for test execution. Developers expect feedback in a matter of
minutes, but most regression test suites—especially in Global 2000 orga-
nizations—take hours (or days!) to execute. This seems to force a trade-off:
settle for sluggish CI or scale down testing.

84

Enterprise Continuous Testing

Slow CI impacts productivity across all team members waiting to review,
extend, document, and test the new functionality. The closer the end-of-
sprint deadline, the more painful each minute of waiting seems. Of course,
you can (and should) accelerate the process with parallel/distributed test
execution and similar technologies. But ultimately, if you want to accelerate
the execution of a large enterprise test suite, you will need to make some
hard decisions about what tests do not need to be executed for each build.

If you apply the risk-based prioritization and test design methodologies
discussed in Chapters 3 and 4, you probably already have a tight, powerful
test suite. But what if you need to further streamline test execution within
your CI? One approach is to use test impact analysis. This technique, as
pioneered by Technical University Munich spinoff CQSE, rapidly exposes
issues in code added/modified since the previous test run by applying two
main principles:18

• Correlate all regression tests (even end-to-end regression tests) to
code and select only the tests associated with the latest round of
code changes. Why waste time executing tests that have no chance of
uncovering defects in your new/modified code?

• Order those regression tests based on their likelihood of detecting a
problem—and prioritize execution of the ones that are most likely
to expose defects. If your builds are set to fail upon the first reported
test case failure, you might as well reach that point as soon as possible.

This enables you to find the lion’s share of defects in a fraction of the time
it would otherwise take. In fact, studies show that this approach uncovers
80% of faulty builds in 1% of the total test execution time—and it uncov-
ers 90% of faulty builds in 2% of the total test execution time.19 In other
words, you can speed up testing 100X and still find most problems. It’s ideal for
optimizing Continuous Testing.

18 For more details on CQSE, see https://www.cqse.eu/en/

85

6. Completing the Continuous Testing Puzzle

This new way to “fail fast” results in much tighter feedback loops—which
means that failing builds get resolved sooner and working builds are deliv-
ered faster. It also accelerates Agile team velocity in a few other ways:

• Test < > code correlation makes it easier to determine where addi-
tional tests need to be added—and when sufficient code coverage has
already been achieved.

• Test < > code correlation also streamlines the defect remediation pro-
cess. Especially with end-to-end tests, finding the code responsible
for a test failure can be like searching for a needle in a haystack. With
this correlation, you get a very precise path from the test sequence
detecting a problem to the code that’s responsible for it.

• By squeezing more—and more effective—testing into a short period
of time, you reduce the number of defects reported late in the pro-
cess and after delivery. This ultimately results in less time wasted on
bug fixes/rework, fewer mid-sprint interruptions, and more resourc-
es to focus on innovation.

Change Impact Analysis for SAP and Pack-
aged Applications

If you’re among the 90% of Global 2000 organizations who build business
processes around SAP software and other packaged applications (e.g., Sales-
force), impact analysis is even more critical.

Deploying changes or upgrades to packaged applications is risky business.
Each change can impact your core business processes, as well as the system

19 This study, performed by CQSE, analyzed both proprietary and open source code, and covered software written for business
information systems as well as embedded systems.

86

Enterprise Continuous Testing

integrations, custom code, security and governance, and user training that
these processes rely on. With SAP and other vendors ramping up their
upgrade pace, running your entire regression test suite after each update is
no longer practical. Few teams have the required time/resources to do so—
and, in many cases, the existing test suite does not even cover the impacted
functionality.

Instead of trying to “test everything,” you can use impact analysis to identi-
fy the specific objects impacted by a given change, then assess which of your
existing tests should be run to test those objects—and what new tests need
to be added. This can reduce testing scope by ~15-20%.

You can reduce the testing scope even further—by 85-95%—if you also
apply the concept of risk. By incorporating usage information into your
analysis, you can prioritize risk based on how frequently an object is used
and its proximate dependency on a changed object. For example, a change
on a payment UI used daily by thousands of customers obviously carries
more risk than a change to a report that your organization never runs. This
prioritization lets you really hone in on the set of tests that are most critical
to run (or that need to be created in order to fill gaps).

Used Impacted Most-at-Risk

85% Reduction in Test Scope

of

 O
bj

ec
ts

 to
 Te

st

Custom

0

500

1000

1500

2000

2500

3000

3500

1930

1222

1302

968

323
156

Standard

87

6. Completing the Continuous Testing Puzzle

This drives a substantial reduction in effort—enabling you to focus your
limited resources on the testing that matters most.

Changes

Frequency X =Damage Risk

Usage Defects

Most-at-Risk

Impact
Analysis

TestDev Ops

88

Enterprise Continuous Testing

So now you know the elements of Continuous Testing and—hopefully—
you’re ready to roll it out in your organization. Where do you begin?

If you’ve ever struggled to reach a destination without a pre-planned route,
map, or trail, you know how frustrating a “trial-and-error” approach can
be. Fortunately, you don’t need to take that approach on your Continuous
Testing journey. You can benefit from the lessons learned by others who
have already taken that journey.

Continuous Testing Maturity Model

Based on Tricentis’ experience guiding enterprise testing teams to opti-
mized Continuous Testing, we have developed a Continuous Testing Ma-
turity Model. We’ve found that this is the most efficient path to rolling out
Continuous Testing in a way that’s sustainable for the team—and valuable
to IT leaders aiming to accelerate delivery without incurring unacceptable
business risk.

You can use this model to assess where you stand today and understand

Charting Your Path and
Tracking Your Progress

CHAPTER 7

89

7. Charting Your Path and Tracking Your Progress

what’s needed to progress from one level to the next.

Level 1: The Typical Starting Point
At this initial level, the key metric is the number of test cases. All test cas-
es are designed based on tester intuition. Testing is performed manually
or is partially automated with a script-based approach (which results in a
high rate of false positives that require constant maintenance). Testers must
manually ensure test data suitability (e.g., by localizing and refining test
data) and wait for dependencies to be provisioned in test environments.
Any API testing is the domain of developers.

Anticipated efficiency gain: 1.3X

Level 2: Aligned
A risk assessment has been completed and risk coverage is now the key
metric of test case definition and execution. Test automation still focuses

M1Focus

Exploratory Testing

Risk Based Prioritization

Test Case Design

Active Test Data Management

Test Driven Service Virtualization

CT Integration (CI, CD)

UI Automation: Script-based
UI Automation: Model-based
API Based Automation

M2 M3 M4

Explore

Optimize

Automate

Manage

Integrate

M5

90

Enterprise Continuous Testing

on the UI, but now uses Model-Based Test Automation, which significant-
ly reduces false positive rates and maintenance efforts. Since there is still
no comprehensive test data management in place, automation primarily
focuses on new data object creation rather than complex administrative
use cases.

Anticipated efficiency gain: 3X

Level 3: Managed
Session-based exploratory testing is introduced to expose risks that speci-
fication-based testing cannot find (e.g., in functionality implemented be-
yond the boundaries of the specification). Additional test cases are defined
via combinatorial test design methodologies such as linear expansion. If
functionality is exposed via APIs, API testing is introduced at the tester
level. UI testing, driven by Model-Based Test Automation, is extended in
areas where API testing is not applicable or effective. Test automation is
introduced into Continuous Integration through initial integrations with
build and deployment tools.

Anticipated efficiency gain: 6X

Level 4: Mature
Test data management (TDM) now provides the test data needed to en-
able continuous, consistent test automation. Service virtualization ensures
that testing can proceed even if dependent components are unstable or un-
available. The introduction of both TDM and service virtualization enables
more sophisticated API testing, end-to-end testing, and continuous test
execution. Tests can now be executed continuously as part of the software
delivery pipeline—providing instant feedback on the business risk associat-
ed with the software release candidate.

Anticipated efficiency gain: >10X

91

7. Charting Your Path and Tracking Your Progress

Level 5: Optimized
Comprehensive test automation has been established and is supported by
sophisticated, stateful service virtualization and test data generation/pro-
visioning. Metrics are in place to monitor and continuously improve the
effectiveness of the software testing process. Continuous Testing is fully
integrated into Continuous Integration and the Continuous Delivery pipe-
line. The transformation into “DevTestOps” via Process, People and Prod-
uct is achieved.

Anticipated efficiency gain: >20X

One Company’s Path to Continuous
Testing

To help you envision how this plays out in the real world, I want to share
one organization’s journey to comprehensive Continuous Testing. I’ve also
collected videos of many QA leaders sharing their organizations’ paths to
Continuous Testing so you can gain insight into additional approaches and
get a feel for how successful paths tend to vary.20

For this example, consider the path of a leading provider of core banking
solutions. Banks across 100+ countries, serving over 1.95 billion customers,
rely on their software to accelerate growth and improve customer service in
an increasingly competitive banking market. They recently accelerated de-
velopment speed 50%-66%+ with a scaled Agile (SAFe) initiative. At that
point, testing emerged as the new process bottleneck: an expensive activity
that was blamed for impeding innovation.

To transform their quality process for Agile delivery speeds, their quality
leaders applied the principles described in this book. The main goals of

20 For links, see https://www.tricentis.com/CTbook

92

Enterprise Continuous Testing

this transformation were to complete testing faster, keep tests in sync with
rapid application changes, and deliver the near-instant continuous quality
feedback that the Agile development teams started to expect.

From Manual to Automated Testing
Like the vast majority of enterprise organizations, this company’s quality
process was dominated by manual testing and also included limited (largely
abandoned) attempts at UI test automation. They had access to a legacy
script-based test automation tool for over 10 years, but UI-based test au-
tomation scripts required constant rework and 50-75% of their testing re-
sources were consumed by test script maintenance. Their library of 100K+
test cases had grown unmanageable. It was slow to execute, provided un-
known risk coverage, and had a high degree of redundancy.

To kick off the testing transformation initiative with easily-demonstrable
test automation gains, they focused on automating a small set of critical test
cases that were hand-selected by the business analysts. They implemented
this test automation using Model-Based Test Automation because:

• It was the fastest way to get tests automated (it did not require as-
signing developers to testing or training testers to learn scripting)

• It relieved them of the “maintenance burden” that undermined their
previous test automation attempts

Risk-Based Prioritization and Test Design
Next, they performed the risk assessment outlined in Chapter 3, and they
found that these initial tests achieved approximately 40% business risk cov-
erage. That’s a great start—but remember that the product they are testing
is a core banking solution. The stakes are extremely high, so they were com-
mitted to achieving much greater risk coverage. They used the test design
methodology explained in Chapter 4 to rapidly increase the risk coverage
with the minimal number of additional tests.

93

7. Charting Your Path and Tracking Your Progress

Many of these new tests were implemented at the API level because this
approach allowed them to start testing earlier (“shift left”) as well as execute
tests much faster. As a rule of thumb, tests that validated the underlying
business logic were implemented at the API level, and tests that validated
specific parts of the interface were added at the UI level. With the first
phase of this new approach, risk coverage increased to approximately 75%.

Over the next few months, they incrementally introduced additional test
cases that pushed the risk coverage up to 95%.

Test Data Management
This powerful test suite created another challenge: in order to continuously
execute the sophisticated new tests designed to increase their risk coverage,
they needed very precise test data—and they needed valid data to be avail-
able at each test step, every time the tests executed. They tackled this chal-
lenge by synthetically generating the bulk of the test data that they needed,
then supplementing it with some very specific production data that was
masked in accordance with GDPR regulations.

Optimize Testing

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

t, $

Automated
Test Cases
(sorted by contribution)

Push business risk coverage +
maximize automation

Bu
sin

es
s R

isk
 C

ov
er

ag
e

%

94

Enterprise Continuous Testing

Both synthetically-generated and masked production data is managed in
a stateful way to ensure that no matter how many times a given test runs,
it always has access to appropriate test data at every point in the testing
process. This is accomplished using the strategies discussed in the previous
chapter.

CI/CD Integration
With the test data challenge addressed, they could feasibly execute these
automated tests during their CI process—so they integrated testing into
their DevOps toolchain via Jenkins.

At this point, they had introduced risk-based prioritization and test design,
increased test automation and expanded it from UI testing into API test-
ing, implemented a core level of test data management, and set up testing
to provide fast feedback on each build.

Service Virtualization
Over time, they noticed that test environment issues were causing a sizeable
number of false positives and incomplete tests. Some tests interacted with
dependent systems (e.g., third-party financial service APIs) that were unsta-
ble, or evolving in parallel with the part of the application that the team was
responsible for testing. By applying service virtualization to simulate the
behavior of these connected systems, they could consistently and reliably
execute their end-to-end tests—no matter what state the actual dependent
systems were in at any given time.

Exploratory Testing
Finally, they introduced exploratory testing as an additional “sanity check”
that would help them expose risks that automated testing just wouldn’t
find. This includes usability issues, missing requirements, and risks lurk-
ing beyond the primary application paths that are the target of specifica-
tion-based testing.

95

7. Charting Your Path and Tracking Your Progress

Note that this is not the exact path described in the model that I presented
above—and that’s completely fine. Some organizations might be so eager
to achieve test automation that they may decide to make it the primary
focus of their first phase of testing transformation. Others might start off
by performing a risk assessment and applying test design to optimize the
risk coverage of their manual tests. And many might begin by using explor-
atory testing to more rapidly expose critical issues in the functionality that’s
currently evolving the fastest. One size does not fit all. If your approach is
tailored to your organization’s specific needs, it will be easier to gain inter-
nal support, and your path to success should be much smoother.

It took approximately a year to achieve true adoption of all of these prac-
tices across the groups involved in the initial adoption. Rolling it out across
the entire organization took another year and a half. Your own journey
won’t necessarily follow this exact path or these precise timelines. Howev-
er, I wanted to provide some specifics to help you understand how all the
elements of Continuous Testing might be rolled out in a real environment.

Results
Your results will vary, of course—but here’s a quick look at what they have
achieved so far:

• Test automation increased significantly with business domain
experts creating and maintaining their own automated tests

• Regression, usability, business flow, interface, and migration testing
is performed for each release

• Test assets are reused across technologies
• Extreme reuse enables rapid test creation and updating
• Tests are automatically parameterized with the optimal data

combinations
• Developers receive quality feedback in minutes, not months
• Automated test results are trusted now that false positives are

controlled

96

Enterprise Continuous Testing

• 60% of defects are discovered in sprint
• 2X more defects are detected—with 44% fewer tests and no

additional testing costs

Measuring Your Progress

The best way to expand an initiative is to demonstrate the quantifiable
gains achieved at each step and set realistic targets for the next milestone.
Appendix D presents some Continuous Testing KPIs you can use to quan-
tify and demonstrate your progress in terms of accelerated innovation, re-
duced business risks, and improved cost efficiency.

97

8. On the Death of Testing…and Wildebeests

Almost a decade ago, Albert Savoia walked on stage at the Google Test
Automation Conference (GTAC) dressed as the Grim Reaper. With the
Doors’ This is the End playing in the background, Savoia famously declared
testing dead. Dead were the days of developers delivering crappy code, then
waiting for QA to test it and decide when it was finally fit for release. In-
stead, he suggested, we should deliver immediately and test in production.
See what issues arise, then roll back the deployment if something severe
occurs.

Are we there yet? Is the idea of testing a release before sending it out into
the wild really dead? To answer that question, let’s consider another exam-
ple that involves death and the wild: the annual wildebeest migration in
Africa.

Every year, over a million wildebeest migrate between Tanzania and Kenya.
Along the way, they must cross the crocodile-infested Mara river. As you
can imagine, this is a rather high-risk activity. As mentioned earlier, risk is
the probability of a damaging event occurring, multiplied by the potential
damage that could result from that event. In this case, the probability of
facing one of the many huge crocodiles who are lurking in the river, an-

On the Death of Testing…
and Wildebeests

CHAPTER 8

98

Enterprise Continuous Testing

ticipating the best feast of the entire year, is relatively high. The potential
damage—death—is extremely high.

The riskiness of this situation would dramatically decrease if the crocodiles
in the river were cute little 7-10 inch baby crocs instead of monstrous 17-
23 foot adults. Even if the probability of encountering a crocodile remains
the same, the potential damage diminishes tremendously. At worst, the
baby crocs might nip at the wildebeests’ feet or make their path across the
river just a little bit bumpy.

What does this have to do with the death of software testing? Quite a lot,
actually. If you want to rapidly release untested software into production,
you need to be aware of what level of risk this involves, then consider
whether that level of risk is acceptable to your business. As you can see
from the large crocs versus the baby ones, all risks are not created equal.

If you’re a social media platform updating the Recommended Friends algo-
rithm, there’s not much risk involved in moving fast and breaking things.
Even if there’s a high probability of users encountering issues, the impact to
the business is extremely low. It’s probably equal to, or even less than, little
baby crocodiles nipping at the wildebeests’ feet.

On the other hand, now imagine that you’re responsible for the back-end
systems that control business-critical operations such as financial transac-
tions or energy delivery. You won’t have nearly as many users as the social
media platform, but any failure that does occur would be extremely critical
and damaging.

Since the risk with the theoretical social media platform is low, they can get
away with crossing the river without first “testing the waters,” so to speak.
If they’re working on more critical functionality—for example, something
that impacts their advertising revenue—they might want to be a little more
cautious and creative. In that case, they might decide to perform an incre-

99

8. On the Death of Testing…and Wildebeests

mental user deployment. Essentially, this is like sending a small, low-prior-
ity group across the river first, then sending increasingly more (and more
important) users over the river as long as no major “crocs” are surfacing.

With an application that the business depends on, you simply can’t afford
to send even a small group of users over untested waters. The risks—like the
adult crocs—are huge and potentially devastating.

In summary, if you can truly afford to send users across untested waters,
then maybe you can declare testing dead. However, if you’re working on es-
sential enterprise software and you try to survive by “testing in production”
alone, it’s your business that might end up dead—killed by those crocs.

101

Appendix A: Who Should Be Testing?

What’s the difference between a developer, a tester, and an SDET (software
development engineer in test)?

This isn’t a lead-in to a joke. In fact, it’s a very serious question that’s being
debated across the software development community. Agile and DevOps
adoption has blurred the historical distinction between testers and devel-
opers…and that’s a good thing. When all goes well, developers are testing
more and taking a greater responsibility for quality. Testers start designing
tests early in each sprint and are constantly “in the loop” thanks to co-loca-
tion and daily standups. If all goes well, fewer defects are introduced into
the code base, and the role of “tester” is elevated from finding the manifes-
tations of developers’ mistakes to protecting the end-user experience.

However, there’s a great debate stirring about how much testing responsi-
bility should be transferred to developers—and how important it is for tes-
ters to know programming. I think that both of these proposed “mergers”
(developers becoming testers and testers becoming programmers) threaten
to undermine the goals of Agile and DevOps. Here’s why:

Appendix A:
Who Should Be Testing?

APPENDIX A

102

Enterprise Continuous Testing

1. Beyond GAFAs, asking developers to be testers impacts innovation
velocity

If you’re Google, Apple, Facebook, or Amazon (GAFA), you’ll always have
a constant supply of top talent ready to help you get innovations to the
market at lightning speed. If you need to accelerate existing projects or
launch new ones, you can pick and choose among the world’s top devel-
opers. You can even get away with placing top-tier developers in an SDET
role. Many eager developers will bear this not-so-ideal position in hopes of
one day becoming a full-fledged developer at their dream employer.

However, in large enterprises, you usually don’t have the luxury of top-tier
developers knocking on your door. Attracting and retaining valuable de-
velopers is an ongoing struggle. As a result, it’s hard enough to satisfy the
business’s insatiable demand for software when all your potential develop-
ers are focused on developing. You simply can’t afford to have developers
focused on the high-level testing tasks that professional testers can handle
just as well…if not better.

2. The leanest test automation approaches don’t require program-
ming skills

Development methods have already become much leaner and more light-
weight to help teams meet expectations for more software, faster. Testing
technologies have also advanced—with lightweight scriptless approaches
architected for the rapid change endemic in Agile and DevOps. However,
many teams are still clinging to the mindset that test automation requires
the high-maintenance, script-based testing approach that was introduced
decades ago—but is still delivering underwhelming results (20% automa-
tion rates, at best). Across virtually all industries, people embrace software
that enables advanced degrees of automation by abstracting the level of
complexity. It’s time for the software testing industry to accept this as well.

In Tricentis’ research at enterprise environments across various industries,
we’ve found that scriptless approaches yield significantly greater degrees

103

Appendix A: Who Should Be Testing?

of sustainable automation than scripted approaches. Moreover, they also
remove the most common testing bottlenecks that trouble teams because:

1. They broaden the range of team members who can contribute to
testing,

2. They’re easier to keep in sync with evolving applications due to high
reusability and modularity, and

3. They relieve you from having to maintain a “test” code base designed
solely to test your actual code base.

3. You’ll fail faster with both developers and testers testing
I guarantee that if you have both developers and professional testers testing,
you will expose critical issues faster—and we’re all familiar with the curve
that shows how the time, cost, and effort of resolving defects rises exponen-
tially over time. Detecting each defect as soon as it’s feasible to do so has a
tremendous impact on in-sprint velocity, as well as preventing field-report-
ed defects from derailing future sprints.

“Development testing” is ideal for exposing coding errors. It involves
checking the functionality and stability of the code that’s written to im-
plement a user story. This is critical. If some low-level mistake entered the
code base (for a simplistic example, a multiplier with a misplaced decimal
point), it’s much more efficient to find and diagnose that problem with a
direct unit test than an end-to-end test that checks functionality from the
user perspective.

However, if your testing is primarily comprised of “bottom-up” tests de-
signed by engineers, you’re likely to overlook critical issues that your end
users probably will not overlook. Does the new functionality work seam-
lessly within broader end-to-end transactions? If the user exercises the ap-
plication in ways that the developers didn’t anticipate, will the application
respond in a reasonable manner? Does your functionality properly interact
with the full range of behavior that dependencies might exhibit? With pro-

104

Enterprise Continuous Testing

fessional testers rigorously exercising core functionality in the context of a
realistic business transaction (and from the “top-down” perspective of the
end user), you will inevitably discover a host of issues that would otherwise
go unnoticed until production.

When developers test in concert with professional testers, you’ll get a much
sharper understanding of the business risks associated with the release.
You’ll also gain the opportunity to resolve high-risk issues before your users
ever encounter them. This is the ultimate goal of testing—and it requires
more collaboration among roles, not more developer<>tester controversy.

105

Appendix B: Your Eroding Test Pyramid

It’s hard to dispute that the test pyramid is the ideal model for Agile teams.
Unit tests form a solid foundation for understanding whether new code is
working correctly:

• They achieve high code coverage: The developer who wrote the
code is uniquely qualified to cover that code as efficiently as possible.
It’s easy for the responsible developer to understand what’s not yet
covered and create test methods that fill the gaps.

• They are fast and “cheap”: Unit tests can be written quickly, exe-
cute in seconds, and require only simple test harnesses (versus the
more extensive test environments needed for system tests).

• They are deterministic: When a unit test fails, it’s relatively easy to
identify what code must be reviewed and fixed. It’s like looking for a
needle in a handful of hay versus trying to find a needle in a heaping
haystack.

However, there’s a problem with this model: the bottom falls out when
you shift from progression to regression testing. Your test pyramid becomes
a diamond.

Appendix B:
Your Eroding Test Pyramid

APPENDIX B

106

Enterprise Continuous Testing

At least, that’s what surfaced in the data we recently collected when moni-
toring unit testing practices across mature Agile teams. In each sprint, de-
velopers are religious about writing the tests required to validate each user
story. Typically, it’s unavoidable: passing unit tests are a key part of the
“definition of done.” By the end of most sprints, there’s a solid base of new
unit tests that are critical in determining if the new code is implemented
correctly and meets expectations. These tests can cover approximately 70%
of the new code.

From the next sprint on, these tests become regression tests. Little by little,
they start failing—eroding the number of working unit tests at the base of
the test pyramid, and eroding the level of risk coverage that the test suite
once provided. After a few iterations, the same unit tests that once achieved
70% risk coverage provide only 50% coverage of that original functionality.
This drops to 35% after several more iterations, and it typically degrades to
25% by the time 6 months have elapsed.

E2E

System
Integration

Tests

Integration Tests

Unit Tests

107

Appendix B: Your Eroding Test Pyramid

This subtle erosion can be extremely dangerous if you’re fearlessly changing
code, expecting those unit tests to serve as your safety net.

Why Unit Tests Erode

Unit tests erode for a number of reasons. Even though unit tests are the-
oretically more stable than other types of tests (e.g., UI tests), they too
will inevitably start failing over time. Code gets extended, refactored, and
repaired as the application evolves. In many cases, the implementation
changes are significant enough to warrant unit test updates. Other times,
the code changes expose the fact that the original test methods and test
harness were too tightly coupled to the technical implementation—again,
requiring unit test updates.

However, those updates aren’t always made. After developers check in the
tests for a new user story, they’re under pressure to pick up and complete
another user story. And another. And another. Each of those new user sto-
ries need passing unit tests to be considered done—but what happens if the

25

50

75

100

1 2 3 4 Releases

Co
de

 C
ov

er
ag

e
% 70

50

35
25

Regression Units

108

Enterprise Continuous Testing

“old” user stories start failing? Usually, nothing. The developer who wrote
that code will have moved on, so he or she would need to get reacquainted
with the long-forgotten code, diagnose why the test is failing, and figure
out how to fix it. This isn’t trivial, and it can disrupt progress on the current
sprint.

Frankly, unit test maintenance often presents a burden that many devel-
opers truly resent. Just scan Stack Overflow and similar communities for
countless developer frustrations related to unit test maintenance.

How to Stabilize the Erosion

I know that some exceptional organizations require—and allocate appro-
priate resources for—unit test upkeep. However, these tend to be organiza-
tions with the luxury of SDETs and other development resources dedicated
to testing. Many enterprises are already struggling to deliver the volume
and scope of software that the business expects, and they simply can’t afford
to shift development resources to additional testing.

If your organization lacks the development resources required for continu-
ous unit test maintenance, what can you do? One option is to have testers
compensate for the lost risk coverage through resilient tests that they can
create and control. Professional testers recognize that designing and main-
taining tests is their primary job, and that they are ultimately evaluated by
the success and effectiveness of the test suite. Let’s be honest. Who’s more
likely to keep tests current: the developers who are pressured to deliver
more code faster, or the testers who are rewarded for finding major issues
(or blamed for overlooking them)? In the most successful organizations
we studied, testers offset the risk coverage loss from eroding unit tests by
adding integration-level tests—primarily at the API level, when feasible.
This enables them to restore the degrading “change-detection safety net”
without disrupting developers’ progress on the current sprint.

109

Appendix C: What About Our TCoE?

Just a few years ago, global enterprises started clamoring to get Testing Cen-
ters of Excellence (TCoEs) in place. In 2011, only 4% of organizations had
TCoEs…but 80% wanted TCoEs. By 2015, nearly half of Global 2000 or-
ganizations adopted TCoEs—a staggering 825% rise in just 4 years. These
TCoEs promised to increase efficiency by establishing a command center
that was laser focused on standardizing software testing methodology, best
practices, automation, KPIs, metrics, and toolsets across the organization.

Then along came Agile.

Even though Agile adoption has been steadily rising for over a decade, it is
just now reaching the majority of development projects in large enterprises.
It is taking even longer to impact how these projects are tested. Usually, the
focus is on development—until it becomes clear that you can’t meet your
acceleration goals without transforming testing as well as development. As
legacy testing approaches are (eventually) reassessed, the value and future of
TCoEs are also brought into question:

Are TCoEs holding us back, or can they help us move forward?

Appendix C:
What About Our TCoE?

APPENDIX C

110

Enterprise Continuous Testing

 I believe that TCoEs can help transform your testing process—but only if
they first undergo their own digital transformation.

The Structure of Traditional TCoEs

Before we start dissecting which parts of a traditional TCoE help and hurt
Agile testing goals, let’s first focus on what a typical TCoE looks like. At the
top, there’s a TCoE head, then a number of test architects and managers
reporting to him or her.

Three additional roles then report directly to the test architects and man-
agers:

• Test design specialists: People in this role help the organization plan
and define the optimal set of test cases. Although this is a proven
way to increase test efficiency, very few organizations currently have
specialists in this role.

• Manual testers: These people manually execute the defined test sce-

narios and document the results at each step. This is, by far, the most
common role in the TCoE. It is usually outsourced to Global System
Integrators.

• Automation engineers: In organizations that have achieved some

level of test automation, these individuals are the ones responsible for
defining and maintaining that test automation.

111

Appendix C: What About Our TCoE?

How Traditional TCoEs Impede Agile

When organizations attempt to use a traditional TCoE to meet the new
business expectations associated with Agile, a number of issues tend to arise:

• Latency delays testing: Testing does not begin until a project is com-
pleted and “thrown over the wall” to the QA team for testing. This
means that developers don’t receive feedback until weeks or months
after they’ve completed a development task. This latency complicates
defect resolution, increases rework, and delays time to market.

• Testing is too slow: With Agile, the application is built (at least) dai-
ly and new functionality is ready to be tested every few days. Manual
test execution simply cannot keep pace with the rapid rate of change.

Test Architects & Managers

Manual Testers

Automation Engineers

Test Design Specialists

Head of TCoE

112

Enterprise Continuous Testing

Month-long test cycles are no longer feasible once developers transi-
tion to Agile sprints, which are two weeks or shorter.

• Testing and development are miles away: Agile expects testers to
collaborate closely with developers in order to provide the rapid feed-
back needed to “fail fast.” Without co-location in a cross-functional
team, testers have limited insight into the business and technical is-
sues associated with each user story. Moreover, distances mean delays
in asking/answering questions, reproducing defects, and so forth.

TCoE Aspects That Could Help Enterprise
Agile Testing

Despite these issues, we don’t need to throw out the baby with the bath-
water. Two primary TCoE benefits—standardization and governance—can
be quite beneficial when introducing and scaling Agile across a large Global
2000 organization:

• Standardization: Standardization of methodology and techniques is
a proven way to increase efficiency. Standardizing on core test design,
test data design, and test automation practices—while still providing
each team a reasonable level of freedom— significantly reduces over-
head and “waste.” The resulting efficiency gain helps testers deliver
the fast feedback expected with Agile.

• Governance: To continuously optimize Agile processes, it’s im-

portant to aggregate KPI and other metrics into a comprehensive
top-level report that crosses business units. This is only possible if the
various teams ensure that their unique metrics are compatible with
higher-level reporting expectations.

113

Appendix C: What About Our TCoE?

Digital TCoEs: A New Path Forward

I’ve found that a new approach to a TCoE—what I call a Digital TCoE—
enables enterprise organizations to satisfy the changing business demands
associated with Agile initiatives… without losing their grip on the stan-
dardization and governance critical for process optimization and scalability.

The structure of the Digital TCoE is fundamentally different than that of a
traditional TCoE. Like before, we start with the Head of the Digital TCoE
at the top, followed by a layer of test architects and managers, then some
test design specialists and automation engineers that help the testers maxi-
mize the efficiency and effectiveness of their testing.

However, there is one major structural difference: we no longer have man-
ual testers sitting in the TCoE. Instead, testers are operationally embedded
within cross-functional Agile teams (ideally, 2 testers in a team with 5-6
developers), but still reporting up to test architects and managers in the

Automation Engineers

Test Architects & Managers

Test Design Specialists
Manual Testers &

Automation
Specialists (AS)

Agile Team

Keep reporting line into TCoE
to ensure alignment/governance

Operationally
embedded in
Agile teams

Head of Digital TCoE

1 TDS to support 5 Agile teams
(1 TDS supports 10 AS)

1 AE to support 5 Agile teams
(1 AE supports 10 AS)

114

Enterprise Continuous Testing

TCoE to ensure appropriate alignment and governance. The testers are ful-
ly supported by the TCoE in terms of tooling, training, technical custom-
izations, and so on.

This co-location is obviously a big change for testers—but it pales in com-
parison to the changes in the type of testing they are performing. To meet
business expectations for accelerated delivery and continuous quality feed-
back, test automation suddenly rises from “nice-to-have” to “must-have.”
Simply situating testers next to developers is not sufficient; testing, as well
as testers, must be an integral part of the Agile team. This means that test-
ing must become an organic part of getting each user story to “done done”
rather than a late-stage activity tacked on every month or so.

In response, enabling rapid, efficient test automation becomes a primary
goal of the core Digital TCoE structure. Automation engineers become
critical for guiding testers on how to automate testing, and test design spe-
cialists help them assess what specific test cases are most important to create
and automate. Scriptless test automation tools reduce the learning curve

Test Design
Specialists

Product Owner (PO)

Testers (2)

Agile Team

Developers (5) Automation
Engineers

Test Architect
& Managers

Testers are part of the Agile team.

Test
results

Methodology
support

Technical
support

Ideal performance for business apps is
provided by teams with 5 devs and 2 testers

Testers require technical & methodology
support. Testers need to provide test results
in an enterprise wide format

Manual Testers &
Automation Specialists

115

Appendix C: What About Our TCoE?

What about Federated TCoEs and
Communities of Practice?

This concept of Digital TCoEs is similar to what Forrester calls a
Federated TCoE and Gartner calls a Community of Practice. In The
State of Agile, Forrester VP and Principal Analyst Diego lo Giudice
recommends: “Start by assigning full-time testers with full-stack de-
velopment skills to your cross-functional teams: 69% of expert firms
do this, compared with 57% of neophytes. Then, help dev teams
grow their automation levels and scope with a few centrally-managed
automation engineers: 34% of expert firms do this, versus 20% of
neophytes. Federate competencies from the TCoE by keeping highly
specialized functional, performance, security, service virtualization,
and test data management (TDM) experts as centralized resources
for intellectual property (IP) creation and consulting.”

The Digital TCoE, Federated TCoE, and Community of Practice
concepts all focus on fostering learning and knowledge sharing
among their members. The main difference with Gartner’s Commu-
nity of Practice is that it places less emphasis on governance and re-
porting. It is less structured—and more fluid. Gartner’s IT Glossary
defines a Community of Practice as “people associated and inter-
linked in a communication or knowledge network because of their
shared interest or shared responsibility for a subject area. Examples
are people who hold similar job functions (project managers, depart-
ment managers, team leaders or customer service agents); all the peo-
ple on a project team; and people interested in specific technologies
(e-commerce or network management). Communities continually
emerge and dissolve, and their membership, processes and knowl-
edge continually change and evolve.”

116

Enterprise Continuous Testing

and help testers, who are typically business domain experts (not program-
mers), make their testing efforts faster and repeatable. This enables the team
to achieve the expected level of test automation without losing the domain
expertise that’s critical for exposing critical defects—and ensuring that rap-
id, iterative releases do not ultimately compromise the end user experience.

The Digital TCoE <> tester relationship involves both give and take. On
the one hand, the Digital TCoE supports the testers in the Agile teams
from both a methodology and an automation standpoint. On the other
hand, testers are expected to provide the TCoE reports in a standardized
way so that they can be aggregated for enterprise-wide reporting—enabling
governance for test results.

Automation Engineers

Test Architects & Managers

Test Design Specialists
Manual Testers &

Automation
Specialists (AS)

Agile Team

Keep reporting line into TCoE to
avoid dilution of test activities

Operationally
embedded

in Agile teams

Head of Digital TCoE

support Agile teams

support Agile teams

117

Appendix D: KPIs for Measuring Your Progress

As I mentioned in Chapter 7, the best way to expand an initiative is to
demonstrate the quantifiable gains achieved at each step and set realistic
targets for the next milestone. Here are some Continuous Testing KPIs you
can use to quantify and demonstrate your progress in terms of accelerated
innovation, reduced business risks, and improved cost efficiency.

Appendix D:
KPIs for Measuring Your Progress

APPENDIX D

Average test case creation time
Total test cases

Total creation time

2

1
3

4

5

6

7

Test update/create ratio per sprint
Test cases updated
New tests created

Average test execution time
Test cases executed

Total execution time

Test executed %
Tests executed
Total test cases

False positive %
False failures

Total test cases

Blocked tests %
Blocked tests) x 100(

) x 100(

) x 100(

Total test cases

Test activity distribution
Environment preparation
Test data preparation
Test case maintenance
Test case creation
Test case execution
Defect diagnostics

SPEED

118

Enterprise Continuous Testing

Requirements coverage %

Lines of code executed
Total lines of code

9

8

10

11

12

13

Requirements
Total Requirements

Product downtime
Total run time

Code coverage %

Defects found
Total execution time

Mean time to detect (MTTD)

Defect leakage %
Defects slipped
Total defects

Defect rejection %
Defects rejected

Total defects found
) x 100(

) x 100(

) x 100(

) x 100(

14 Tests passed %
Test cases passed) x 100(
Total test cases

Risk coverage %

• Priority
• Severity
• Functional area
• Test type/stage (dev, QA, UAT, End User)
• Cause (env, architecture, code,
 design, requirements, user entry)
• Test type (review, walkthrough, test
 execution, exploratory, etc.)

• Severity
• Stage found (e.g. dev, QA, UAT, production)

• Hardware
• Software

• Hardware
• Software

• Manual
• Automated

Defects found by automation/
manual ratio

Defects found by automation
Defects found by manual testing

16

15

17

18

Average defects per
exploratory session

Defects found
of sessions

Total tester cost
of testers

Defect distribution by

Product downtime %

QUALITY

Cost of test environment20

21

19

22

Cost of environment maintenance

Cost of test creation

Cost of defect by
• Manual
• Automated

• Manual
• Automated

Cost of test execution24

25

23

Average cost per tester

Cost of test maintenance

COST

119

Direct links to the references cited in this book, as well as related resources
such as real-world Continuous Testing success stories, are available at
https://www.tricentis.com/CTbook.

References and
Related Resources

Wolfgang Platz is the Founder and Chief Product Officer of Tricentis.
Wolfgang is the force behind innovations such as model-based automation
and the linear expansion test design methodology. The technology he de-
veloped drives Tricentis’ Continuous Testing Platform, which is recognized
as the industry’s #1 solution by all top analysts. Today, he is responsible for
advancing Tricentis’ vision to make resilient enterprise automation a reality
across Global 2000 organizations.

Prior to Tricentis, Wolfgang was at Capgemini as a group head of IT devel-
opment for one of the world’s largest IT insurance-development projects.
There, he was responsible for architecture and implementation of life insur-
ance policies and project management for several projects in banks.

Wolfgang holds a Master’s degree in Technical Physics as well as a Master’s de-
gree in Business Administration from the Vienna University of Technology.

Let’s face it. Businesses don’t want—or need—perfect software. They want
to deliver innovations as soon as possible. A single delay might be the only
opportunity a competitor needs to gain market share and become the new
disruptor.

Testing is essential for accelerating the delivery of innovative applications
without incurring unacceptable business risk. We need fast feedback on
whether the latest innovations will work as expected or crash and burn in
production. We also need to know if these changes somehow broke the core
functionality that the customer base—and thus the business—depends upon.

However, even with the most extreme automation, we simply don’t have time
for the “test everything” approach. It’s impossible to test every possible path
through a modern business application every time that we want to release.
Fortunately, we don’t need to. If we rethink our testing approach, we can get
a thorough assessment of a release candidate’s business risk with much less
testing than most companies are doing today.

Enterprise Continuous Testing: Transforming Testing for Agile and
DevOps introduces a Continuous Testing strategy that helps enterprises
accelerate and prioritize testing to meet the needs of fast-paced Agile and
DevOps initiatives. Software testing has traditionally been the enemy of speed
and innovation—a slow, costly process that delays releases while delivering
questionable business value. This new strategy helps you test smarter, so
testing provides rapid insight into what matters most to the business.

This book is written for senior quality managers and business executives
who need to achieve the optimal balance between speed and quality when
delivering the software that drives the modern business. It provides a roadmap
for how to accelerate delivery with high confidence and low business risk.

If you want to realign your Global 2000 organization’s quality process
with the unrelenting drive towards accelerated delivery speed and
“Continuous Everything,” then you’re in the right place.

