
GUIDE

How to estimate
DevOps toolchain
maintenance and
support costs

We’re so used to talking up the benefits of
automation that we often overlook the costs. How
much valuable time are we spending on toolchain
maintenance, and is there a better way to manage it?

The assembly line is a must-have system but the teams rarely
need to excel in tool maintenance to be competitive in the field
where they actually compete. It is an area that can be
outsourced to domain experts.

You can easily find out the costs related to an outsourced
managed assembly line service. However, for an educated
“make or buy” decision, one also has to be able to estimate the
internal costs of running an internally maintained tool chain.
The purpose of this document is to give guidance for making
these estimates.

This guide does not provide any actual numeric information.
The actual figures depend heavily on the size of the
organization, the number of tools and toolchains in use, and
the skills and professionalism of the internal support and
maintenance operations.

Basic cost factors

Overview

The costs of running internally managed tool chains are often
hidden because the assembly lines are set up and maintained by
project personnel as a side job. Additionally, while lacking a
centralized platform, teams may have to set up “throw away”
assembly lines on a project-by-project basis. This causes
repeating and overlapping costs related to platform
installation, toolchain maintenance, and software licences.

The overall cost is a combination of expenditures in three
categories:

Direct costs - costs from actual tooling related maintenance
and support work e.g. hours spent installing, maintaining,
servicing, problem solving, and supporting the toolchain.
Project specific assembly lines with overlapping licences may
cause additional cost compared to a centralized platform model.

Indirect costs - costs accumulating as lost working hours
while the platform is not in use due to e.g. poor platform
maintenance and/or insufficient incident management
practices.

Opportunity costs - time spent by development, quality
assurance, or operations experts in servicing the toolchain
instead of focusing on their primary assignment.

As a rule of thumb, neglecting the work that generates direct
costs will cause hard-to-measure but often more costly
indirect expenses.

Direct costs

Hours spent in:

• Tool installation

• Expanding the platform with new tools and tool extensions

 (also testing the extensions prior to assigning them to

 production)

• Continuous maintenance: keeping track of the updates,

 update installation, system fine-tuning, capacity planning,

 etc.

• Providing tool related user support and helpdesk service

• Tool integration and maintenance of the existing integrations

• Building and keeping up the support/maintenance

 competence

• Developing the tool set: planning, design, installation of new

 functionalities

• Maintaining the underlying HW/OS platform

• Building and keeping up the HW/OS platform maintenance

 competence

• Incident management and recovery (including practice

 rounds)

• Tool licence management and optimization

Indirect costs

Hours lost due to:

• Problems in tool availability

• Problems in tool-to-tool integrations

• Insufficient tool update procedures (e.g. lost

 efficiency due to the use of old tool versions)

• Insufficient or slow user support

Opportunity costs

Time that should have been
spent on delivering value to
customers (new features, better
quality...) is wasted on basic tool
maintenance and support.
Experts cannot focus on their
area:

• Development work

• Testing work

• Operations work

• DevOps methodology development

Overall cost estimates by
calculating the "DevOps tax"

What is the DevOps tax?

Automation provides visible benefits for any software
producing organization. The build, deployment and test
processes become faster and more reliable, which improves
quality and increases value throughput.

However, these benefits do not come free of charge. An
increased level of automation equates to an increased number
of automation-related tools and integrations. The maintenance
burden required to keep the systems up and running increases
with the number of tools and integrations.

People involved in the process end up spending part of their
valuable time in tool maintenance. This time spent in toolchain
maintenance, time that could have been used for more value-
adding R&D work, is called the “DevOps tax”.

Estimates with a 10% DevOps tax

According to Forrester research, “developers spend on average
10% of their time in tool maintenance”. By using the 10% rule
as a starting point, it is relatively easy to estimate the amount of
DevOps tax paid, in terms of person months.

Running an effective and highly optimized software
development and delivery organization is a demanding job.
Teams have to balance tight schedules, ever increasing system
complexity and a scarcity of skilled experts.

An integrated DevOps tool chain, like any assembly line, is a
key enabler for operational efficiency. As the level of
automation increases, the tooling platforms become more
extensive and the accompanying maintenance and support
tasks become more complex.

The combination of demanding schedules and increasing
system complexity forces teams to choose where to focus.
Should they be the experts in the software development and
delivery, maintaining the assembly line tooling, or both?

For most organizations the answer should be relatively clear.
They should spend the majority of their time working on the
software itself.

A team of 10 developers loses 1 person year worth of time in tool
maintenance that could have been spent on more effective
value adding development. This means that on average, at any
given time, 1 full time engineer’s worth of effort is reserved for
tool related maintenance and support tasks.

Outsourcing some (let’s assume a moderate 50%) of the
toolchain maintenance to a service provider for a team of 20
developers has the same effect as hiring a new full time
employee. The benefits over hiring a completely new person are
obvious - there’s no need to go through time consuming
recruitment and onboarding processes because “new
employee” is already known by the organization. The “new”
employee already knows the work details and is ready to
contribute from day one.

Direct cost factors in more
detail

Tool maintenance and development
work estimates

This chapter gives further guidance for calculating direct tool
maintenance and development efforts. The actual work hours
spent in each of the tasks depends on multiple factors:

• Skills and experience of the maintenance and support

 personnel

• Level of maintenance automation

• Toolchain scale and complexity - no. of tools, tool extensions,

 and integrations

• Amount of toolchain data payload

• Number of (active) users

• Environment type (on-prem, public cloud, etc.)

• Expected system uptime and support

• SLA targets

Relative work loads - tool platform
wide tasks

The tasks described in the following table apply to the complete
toolchain as a whole. The effort estimates are relative and based
on practical experience. For example, a task graded at 12 takes
12 times the effort of a task graded at 1.

2

Relative work loads - tool specific
tasks

The following tasks are tool specific, which means that the
complete workload of a toolchain can be calculated by
multiplying the tool specific work effort by the number of tools
in use.

Risks related to insufficient
toolchain

Neglecting to properly maintain the software assembly line
carries significant risks:

• Savings in direct maintenance will always generate

 additional indirect costs because the toolchain will not

 work reliably, causing downtime.

• Unreliable systems lower production throughput and cause

 overall dissatisfaction within the R&D teams.

• Failing to keep the system up to date via frequent and

 systematic upgrades will generate technical debt that

 accrues over time. Paying back the debt after a prolonged

 period of poor maintenance can be difficult and very

 expensive.

• A poorly managed system is a source of severe security

 related risks.

Benefits of a professionally
managed toolchain

The benefits of a professionally managed software assembly
line are clear:

• The system works reliably and efficiently, enabling the teams

 to focus on more value adding work and deliver with higher

 throughput.

• The software R&D development, quality and operations

 experts are happy because they do not have to spend a

 significant part of their time in tool maintenance.

• Systematic, gradual toolchain development ensures that it

 develops in line with needs and requirements and doesn’t

 accrue unnecessary technical debt.

• The systems, including critical assets like requirements,

 documentation, source code and binaries stay secure.

Automation brings enormous
savings and benefits, but we
need to be aware that there
are costs too. Learning how to
measure and mitigate them is
essential if you want to avoid
accumulating technical debt
and remain truly agile. To find
out how you can reduce the
“DevOps tax” in your
company talk to one of
our experts.

www.eficode.com

The assembly line is a must-have system but the teams rarely
need to excel in tool maintenance to be competitive in the field
where they actually compete. It is an area that can be
outsourced to domain experts.

You can easily find out the costs related to an outsourced
managed assembly line service. However, for an educated
“make or buy” decision, one also has to be able to estimate the
internal costs of running an internally maintained tool chain.
The purpose of this document is to give guidance for making
these estimates.

This guide does not provide any actual numeric information.
The actual figures depend heavily on the size of the
organization, the number of tools and toolchains in use, and
the skills and professionalism of the internal support and
maintenance operations.

Basic cost factors

Overview

The costs of running internally managed tool chains are often
hidden because the assembly lines are set up and maintained by
project personnel as a side job. Additionally, while lacking a
centralized platform, teams may have to set up “throw away”
assembly lines on a project-by-project basis. This causes
repeating and overlapping costs related to platform
installation, toolchain maintenance, and software licences.

The overall cost is a combination of expenditures in three
categories:

Direct costs - costs from actual tooling related maintenance
and support work e.g. hours spent installing, maintaining,
servicing, problem solving, and supporting the toolchain.
Project specific assembly lines with overlapping licences may
cause additional cost compared to a centralized platform model.

Indirect costs - costs accumulating as lost working hours
while the platform is not in use due to e.g. poor platform
maintenance and/or insufficient incident management
practices.

Opportunity costs - time spent by development, quality
assurance, or operations experts in servicing the toolchain
instead of focusing on their primary assignment.

As a rule of thumb, neglecting the work that generates direct
costs will cause hard-to-measure but often more costly
indirect expenses.

Direct costs

Hours spent in:

• Tool installation

• Expanding the platform with new tools and tool extensions

 (also testing the extensions prior to assigning them to

 production)

• Continuous maintenance: keeping track of the updates,

 update installation, system fine-tuning, capacity planning,

 etc.

• Providing tool related user support and helpdesk service

• Tool integration and maintenance of the existing integrations

• Building and keeping up the support/maintenance

 competence

• Developing the tool set: planning, design, installation of new

 functionalities

• Maintaining the underlying HW/OS platform

• Building and keeping up the HW/OS platform maintenance

 competence

• Incident management and recovery (including practice

 rounds)

• Tool licence management and optimization

Indirect costs

Hours lost due to:

• Problems in tool availability

• Problems in tool-to-tool integrations

• Insufficient tool update procedures (e.g. lost

 efficiency due to the use of old tool versions)

• Insufficient or slow user support

Opportunity costs

Time that should have been
spent on delivering value to
customers (new features, better
quality...) is wasted on basic tool
maintenance and support.
Experts cannot focus on their
area:

• Development work

• Testing work

• Operations work

• DevOps methodology development

Overall cost estimates by
calculating the "DevOps tax"

What is the DevOps tax?

Automation provides visible benefits for any software
producing organization. The build, deployment and test
processes become faster and more reliable, which improves
quality and increases value throughput.

However, these benefits do not come free of charge. An
increased level of automation equates to an increased number
of automation-related tools and integrations. The maintenance
burden required to keep the systems up and running increases
with the number of tools and integrations.

People involved in the process end up spending part of their
valuable time in tool maintenance. This time spent in toolchain
maintenance, time that could have been used for more value-
adding R&D work, is called the “DevOps tax”.

Estimates with a 10% DevOps tax

According to Forrester research, “developers spend on average
10% of their time in tool maintenance”. By using the 10% rule
as a starting point, it is relatively easy to estimate the amount of
DevOps tax paid, in terms of person months.

Running an effective and highly optimized software
development and delivery organization is a demanding job.
Teams have to balance tight schedules, ever increasing system
complexity and a scarcity of skilled experts.

An integrated DevOps tool chain, like any assembly line, is a
key enabler for operational efficiency. As the level of
automation increases, the tooling platforms become more
extensive and the accompanying maintenance and support
tasks become more complex.

The combination of demanding schedules and increasing
system complexity forces teams to choose where to focus.
Should they be the experts in the software development and
delivery, maintaining the assembly line tooling, or both?

For most organizations the answer should be relatively clear.
They should spend the majority of their time working on the
software itself.

A team of 10 developers loses 1 person year worth of time in tool
maintenance that could have been spent on more effective
value adding development. This means that on average, at any
given time, 1 full time engineer’s worth of effort is reserved for
tool related maintenance and support tasks.

Outsourcing some (let’s assume a moderate 50%) of the
toolchain maintenance to a service provider for a team of 20
developers has the same effect as hiring a new full time
employee. The benefits over hiring a completely new person are
obvious - there’s no need to go through time consuming
recruitment and onboarding processes because “new
employee” is already known by the organization. The “new”
employee already knows the work details and is ready to
contribute from day one.

Direct cost factors in more
detail

Tool maintenance and development
work estimates

This chapter gives further guidance for calculating direct tool
maintenance and development efforts. The actual work hours
spent in each of the tasks depends on multiple factors:

• Skills and experience of the maintenance and support

 personnel

• Level of maintenance automation

• Toolchain scale and complexity - no. of tools, tool extensions,

 and integrations

• Amount of toolchain data payload

• Number of (active) users

• Environment type (on-prem, public cloud, etc.)

• Expected system uptime and support

• SLA targets

Relative work loads - tool platform
wide tasks

The tasks described in the following table apply to the complete
toolchain as a whole. The effort estimates are relative and based
on practical experience. For example, a task graded at 12 takes
12 times the effort of a task graded at 1.

3

Relative work loads - tool specific
tasks

The following tasks are tool specific, which means that the
complete workload of a toolchain can be calculated by
multiplying the tool specific work effort by the number of tools
in use.

Risks related to insufficient
toolchain

Neglecting to properly maintain the software assembly line
carries significant risks:

• Savings in direct maintenance will always generate

 additional indirect costs because the toolchain will not

 work reliably, causing downtime.

• Unreliable systems lower production throughput and cause

 overall dissatisfaction within the R&D teams.

• Failing to keep the system up to date via frequent and

 systematic upgrades will generate technical debt that

 accrues over time. Paying back the debt after a prolonged

 period of poor maintenance can be difficult and very

 expensive.

• A poorly managed system is a source of severe security

 related risks.

Benefits of a professionally
managed toolchain

The benefits of a professionally managed software assembly
line are clear:

• The system works reliably and efficiently, enabling the teams

 to focus on more value adding work and deliver with higher

 throughput.

• The software R&D development, quality and operations

 experts are happy because they do not have to spend a

 significant part of their time in tool maintenance.

• Systematic, gradual toolchain development ensures that it

 develops in line with needs and requirements and doesn’t

 accrue unnecessary technical debt.

• The systems, including critical assets like requirements,

 documentation, source code and binaries stay secure.

Automation brings enormous
savings and benefits, but we
need to be aware that there
are costs too. Learning how to
measure and mitigate them is
essential if you want to avoid
accumulating technical debt
and remain truly agile. To find
out how you can reduce the
“DevOps tax” in your
company talk to one of
our experts.

www.eficode.com

The assembly line is a must-have system but the teams rarely
need to excel in tool maintenance to be competitive in the field
where they actually compete. It is an area that can be
outsourced to domain experts.

You can easily find out the costs related to an outsourced
managed assembly line service. However, for an educated
“make or buy” decision, one also has to be able to estimate the
internal costs of running an internally maintained tool chain.
The purpose of this document is to give guidance for making
these estimates.

This guide does not provide any actual numeric information.
The actual figures depend heavily on the size of the
organization, the number of tools and toolchains in use, and
the skills and professionalism of the internal support and
maintenance operations.

Basic cost factors

Overview

The costs of running internally managed tool chains are often
hidden because the assembly lines are set up and maintained by
project personnel as a side job. Additionally, while lacking a
centralized platform, teams may have to set up “throw away”
assembly lines on a project-by-project basis. This causes
repeating and overlapping costs related to platform
installation, toolchain maintenance, and software licences.

The overall cost is a combination of expenditures in three
categories:

Direct costs - costs from actual tooling related maintenance
and support work e.g. hours spent installing, maintaining,
servicing, problem solving, and supporting the toolchain.
Project specific assembly lines with overlapping licences may
cause additional cost compared to a centralized platform model.

Indirect costs - costs accumulating as lost working hours
while the platform is not in use due to e.g. poor platform
maintenance and/or insufficient incident management
practices.

Opportunity costs - time spent by development, quality
assurance, or operations experts in servicing the toolchain
instead of focusing on their primary assignment.

As a rule of thumb, neglecting the work that generates direct
costs will cause hard-to-measure but often more costly
indirect expenses.

Direct costs

Hours spent in:

• Tool installation

• Expanding the platform with new tools and tool extensions

 (also testing the extensions prior to assigning them to

 production)

• Continuous maintenance: keeping track of the updates,

 update installation, system fine-tuning, capacity planning,

 etc.

• Providing tool related user support and helpdesk service

• Tool integration and maintenance of the existing integrations

• Building and keeping up the support/maintenance

 competence

• Developing the tool set: planning, design, installation of new

 functionalities

• Maintaining the underlying HW/OS platform

• Building and keeping up the HW/OS platform maintenance

 competence

• Incident management and recovery (including practice

 rounds)

• Tool licence management and optimization

Indirect costs

Hours lost due to:

• Problems in tool availability

• Problems in tool-to-tool integrations

• Insufficient tool update procedures (e.g. lost

 efficiency due to the use of old tool versions)

• Insufficient or slow user support

Opportunity costs

Time that should have been
spent on delivering value to
customers (new features, better
quality...) is wasted on basic tool
maintenance and support.
Experts cannot focus on their
area:

• Development work

• Testing work

• Operations work

• DevOps methodology development

Overall cost estimates by
calculating the "DevOps tax"

What is the DevOps tax?

Automation provides visible benefits for any software
producing organization. The build, deployment and test
processes become faster and more reliable, which improves
quality and increases value throughput.

However, these benefits do not come free of charge. An
increased level of automation equates to an increased number
of automation-related tools and integrations. The maintenance
burden required to keep the systems up and running increases
with the number of tools and integrations.

People involved in the process end up spending part of their
valuable time in tool maintenance. This time spent in toolchain
maintenance, time that could have been used for more value-
adding R&D work, is called the “DevOps tax”.

Estimates with a 10% DevOps tax

According to Forrester research, “developers spend on average
10% of their time in tool maintenance”. By using the 10% rule
as a starting point, it is relatively easy to estimate the amount of
DevOps tax paid, in terms of person months.

Running an effective and highly optimized software
development and delivery organization is a demanding job.
Teams have to balance tight schedules, ever increasing system
complexity and a scarcity of skilled experts.

An integrated DevOps tool chain, like any assembly line, is a
key enabler for operational efficiency. As the level of
automation increases, the tooling platforms become more
extensive and the accompanying maintenance and support
tasks become more complex.

The combination of demanding schedules and increasing
system complexity forces teams to choose where to focus.
Should they be the experts in the software development and
delivery, maintaining the assembly line tooling, or both?

For most organizations the answer should be relatively clear.
They should spend the majority of their time working on the
software itself.

A team of 10 developers loses 1 person year worth of time in tool
maintenance that could have been spent on more effective
value adding development. This means that on average, at any
given time, 1 full time engineer’s worth of effort is reserved for
tool related maintenance and support tasks.

Outsourcing some (let’s assume a moderate 50%) of the
toolchain maintenance to a service provider for a team of 20
developers has the same effect as hiring a new full time
employee. The benefits over hiring a completely new person are
obvious - there’s no need to go through time consuming
recruitment and onboarding processes because “new
employee” is already known by the organization. The “new”
employee already knows the work details and is ready to
contribute from day one.

Direct cost factors in more
detail

Tool maintenance and development
work estimates

This chapter gives further guidance for calculating direct tool
maintenance and development efforts. The actual work hours
spent in each of the tasks depends on multiple factors:

• Skills and experience of the maintenance and support

 personnel

• Level of maintenance automation

• Toolchain scale and complexity - no. of tools, tool extensions,

 and integrations

• Amount of toolchain data payload

• Number of (active) users

• Environment type (on-prem, public cloud, etc.)

• Expected system uptime and support

• SLA targets

Relative work loads - tool platform
wide tasks

The tasks described in the following table apply to the complete
toolchain as a whole. The effort estimates are relative and based
on practical experience. For example, a task graded at 12 takes
12 times the effort of a task graded at 1.

4

Relative work loads - tool specific
tasks

The following tasks are tool specific, which means that the
complete workload of a toolchain can be calculated by
multiplying the tool specific work effort by the number of tools
in use.

Risks related to insufficient
toolchain

Neglecting to properly maintain the software assembly line
carries significant risks:

• Savings in direct maintenance will always generate

 additional indirect costs because the toolchain will not

 work reliably, causing downtime.

• Unreliable systems lower production throughput and cause

 overall dissatisfaction within the R&D teams.

• Failing to keep the system up to date via frequent and

 systematic upgrades will generate technical debt that

 accrues over time. Paying back the debt after a prolonged

 period of poor maintenance can be difficult and very

 expensive.

• A poorly managed system is a source of severe security

 related risks.

Benefits of a professionally
managed toolchain

The benefits of a professionally managed software assembly
line are clear:

• The system works reliably and efficiently, enabling the teams

 to focus on more value adding work and deliver with higher

 throughput.

• The software R&D development, quality and operations

 experts are happy because they do not have to spend a

 significant part of their time in tool maintenance.

• Systematic, gradual toolchain development ensures that it

 develops in line with needs and requirements and doesn’t

 accrue unnecessary technical debt.

• The systems, including critical assets like requirements,

 documentation, source code and binaries stay secure.

Automation brings enormous
savings and benefits, but we
need to be aware that there
are costs too. Learning how to
measure and mitigate them is
essential if you want to avoid
accumulating technical debt
and remain truly agile. To find
out how you can reduce the
“DevOps tax” in your
company talk to one of
our experts.

www.eficode.com

The assembly line is a must-have system but the teams rarely
need to excel in tool maintenance to be competitive in the field
where they actually compete. It is an area that can be
outsourced to domain experts.

You can easily find out the costs related to an outsourced
managed assembly line service. However, for an educated
“make or buy” decision, one also has to be able to estimate the
internal costs of running an internally maintained tool chain.
The purpose of this document is to give guidance for making
these estimates.

This guide does not provide any actual numeric information.
The actual figures depend heavily on the size of the
organization, the number of tools and toolchains in use, and
the skills and professionalism of the internal support and
maintenance operations.

Basic cost factors

Overview

The costs of running internally managed tool chains are often
hidden because the assembly lines are set up and maintained by
project personnel as a side job. Additionally, while lacking a
centralized platform, teams may have to set up “throw away”
assembly lines on a project-by-project basis. This causes
repeating and overlapping costs related to platform
installation, toolchain maintenance, and software licences.

The overall cost is a combination of expenditures in three
categories:

Direct costs - costs from actual tooling related maintenance
and support work e.g. hours spent installing, maintaining,
servicing, problem solving, and supporting the toolchain.
Project specific assembly lines with overlapping licences may
cause additional cost compared to a centralized platform model.

Indirect costs - costs accumulating as lost working hours
while the platform is not in use due to e.g. poor platform
maintenance and/or insufficient incident management
practices.

Opportunity costs - time spent by development, quality
assurance, or operations experts in servicing the toolchain
instead of focusing on their primary assignment.

As a rule of thumb, neglecting the work that generates direct
costs will cause hard-to-measure but often more costly
indirect expenses.

Direct costs

Hours spent in:

• Tool installation

• Expanding the platform with new tools and tool extensions

 (also testing the extensions prior to assigning them to

 production)

• Continuous maintenance: keeping track of the updates,

 update installation, system fine-tuning, capacity planning,

 etc.

• Providing tool related user support and helpdesk service

• Tool integration and maintenance of the existing integrations

• Building and keeping up the support/maintenance

 competence

• Developing the tool set: planning, design, installation of new

 functionalities

• Maintaining the underlying HW/OS platform

• Building and keeping up the HW/OS platform maintenance

 competence

• Incident management and recovery (including practice

 rounds)

• Tool licence management and optimization

Indirect costs

Hours lost due to:

• Problems in tool availability

• Problems in tool-to-tool integrations

• Insufficient tool update procedures (e.g. lost

 efficiency due to the use of old tool versions)

• Insufficient or slow user support

Opportunity costs

Time that should have been
spent on delivering value to
customers (new features, better
quality...) is wasted on basic tool
maintenance and support.
Experts cannot focus on their
area:

• Development work

• Testing work

• Operations work

• DevOps methodology development

Overall cost estimates by
calculating the "DevOps tax"

What is the DevOps tax?

Automation provides visible benefits for any software
producing organization. The build, deployment and test
processes become faster and more reliable, which improves
quality and increases value throughput.

However, these benefits do not come free of charge. An
increased level of automation equates to an increased number
of automation-related tools and integrations. The maintenance
burden required to keep the systems up and running increases
with the number of tools and integrations.

People involved in the process end up spending part of their
valuable time in tool maintenance. This time spent in toolchain
maintenance, time that could have been used for more value-
adding R&D work, is called the “DevOps tax”.

Estimates with a 10% DevOps tax

According to Forrester research, “developers spend on average
10% of their time in tool maintenance”. By using the 10% rule
as a starting point, it is relatively easy to estimate the amount of
DevOps tax paid, in terms of person months.

Running an effective and highly optimized software
development and delivery organization is a demanding job.
Teams have to balance tight schedules, ever increasing system
complexity and a scarcity of skilled experts.

An integrated DevOps tool chain, like any assembly line, is a
key enabler for operational efficiency. As the level of
automation increases, the tooling platforms become more
extensive and the accompanying maintenance and support
tasks become more complex.

The combination of demanding schedules and increasing
system complexity forces teams to choose where to focus.
Should they be the experts in the software development and
delivery, maintaining the assembly line tooling, or both?

For most organizations the answer should be relatively clear.
They should spend the majority of their time working on the
software itself.

A team of 10 developers loses 1 person year worth of time in tool
maintenance that could have been spent on more effective
value adding development. This means that on average, at any
given time, 1 full time engineer’s worth of effort is reserved for
tool related maintenance and support tasks.

Outsourcing some (let’s assume a moderate 50%) of the
toolchain maintenance to a service provider for a team of 20
developers has the same effect as hiring a new full time
employee. The benefits over hiring a completely new person are
obvious - there’s no need to go through time consuming
recruitment and onboarding processes because “new
employee” is already known by the organization. The “new”
employee already knows the work details and is ready to
contribute from day one.

Direct cost factors in more
detail

Tool maintenance and development
work estimates

This chapter gives further guidance for calculating direct tool
maintenance and development efforts. The actual work hours
spent in each of the tasks depends on multiple factors:

• Skills and experience of the maintenance and support

 personnel

• Level of maintenance automation

• Toolchain scale and complexity - no. of tools, tool extensions,

 and integrations

• Amount of toolchain data payload

• Number of (active) users

• Environment type (on-prem, public cloud, etc.)

• Expected system uptime and support

• SLA targets

Relative work loads - tool platform
wide tasks

The tasks described in the following table apply to the complete
toolchain as a whole. The effort estimates are relative and based
on practical experience. For example, a task graded at 12 takes
12 times the effort of a task graded at 1.

5

Relative work loads - tool specific
tasks

The following tasks are tool specific, which means that the
complete workload of a toolchain can be calculated by
multiplying the tool specific work effort by the number of tools
in use.

Risks related to insufficient
toolchain

Neglecting to properly maintain the software assembly line
carries significant risks:

• Savings in direct maintenance will always generate

 additional indirect costs because the toolchain will not

 work reliably, causing downtime.

• Unreliable systems lower production throughput and cause

 overall dissatisfaction within the R&D teams.

• Failing to keep the system up to date via frequent and

 systematic upgrades will generate technical debt that

 accrues over time. Paying back the debt after a prolonged

 period of poor maintenance can be difficult and very

 expensive.

• A poorly managed system is a source of severe security

 related risks.

Benefits of a professionally
managed toolchain

The benefits of a professionally managed software assembly
line are clear:

• The system works reliably and efficiently, enabling the teams

 to focus on more value adding work and deliver with higher

 throughput.

• The software R&D development, quality and operations

 experts are happy because they do not have to spend a

 significant part of their time in tool maintenance.

• Systematic, gradual toolchain development ensures that it

 develops in line with needs and requirements and doesn’t

 accrue unnecessary technical debt.

• The systems, including critical assets like requirements,

 documentation, source code and binaries stay secure.

Automation brings enormous
savings and benefits, but we
need to be aware that there
are costs too. Learning how to
measure and mitigate them is
essential if you want to avoid
accumulating technical debt
and remain truly agile. To find
out how you can reduce the
“DevOps tax” in your
company talk to one of
our experts.

www.eficode.com

The assembly line is a must-have system but the teams rarely
need to excel in tool maintenance to be competitive in the field
where they actually compete. It is an area that can be
outsourced to domain experts.

You can easily find out the costs related to an outsourced
managed assembly line service. However, for an educated
“make or buy” decision, one also has to be able to estimate the
internal costs of running an internally maintained tool chain.
The purpose of this document is to give guidance for making
these estimates.

This guide does not provide any actual numeric information.
The actual figures depend heavily on the size of the
organization, the number of tools and toolchains in use, and
the skills and professionalism of the internal support and
maintenance operations.

Basic cost factors

Overview

The costs of running internally managed tool chains are often
hidden because the assembly lines are set up and maintained by
project personnel as a side job. Additionally, while lacking a
centralized platform, teams may have to set up “throw away”
assembly lines on a project-by-project basis. This causes
repeating and overlapping costs related to platform
installation, toolchain maintenance, and software licences.

The overall cost is a combination of expenditures in three
categories:

Direct costs - costs from actual tooling related maintenance
and support work e.g. hours spent installing, maintaining,
servicing, problem solving, and supporting the toolchain.
Project specific assembly lines with overlapping licences may
cause additional cost compared to a centralized platform model.

Indirect costs - costs accumulating as lost working hours
while the platform is not in use due to e.g. poor platform
maintenance and/or insufficient incident management
practices.

Opportunity costs - time spent by development, quality
assurance, or operations experts in servicing the toolchain
instead of focusing on their primary assignment.

As a rule of thumb, neglecting the work that generates direct
costs will cause hard-to-measure but often more costly
indirect expenses.

Direct costs

Hours spent in:

• Tool installation

• Expanding the platform with new tools and tool extensions

 (also testing the extensions prior to assigning them to

 production)

• Continuous maintenance: keeping track of the updates,

 update installation, system fine-tuning, capacity planning,

 etc.

• Providing tool related user support and helpdesk service

• Tool integration and maintenance of the existing integrations

• Building and keeping up the support/maintenance

 competence

• Developing the tool set: planning, design, installation of new

 functionalities

• Maintaining the underlying HW/OS platform

• Building and keeping up the HW/OS platform maintenance

 competence

• Incident management and recovery (including practice

 rounds)

• Tool licence management and optimization

Indirect costs

Hours lost due to:

• Problems in tool availability

• Problems in tool-to-tool integrations

• Insufficient tool update procedures (e.g. lost

 efficiency due to the use of old tool versions)

• Insufficient or slow user support

Opportunity costs

Time that should have been
spent on delivering value to
customers (new features, better
quality...) is wasted on basic tool
maintenance and support.
Experts cannot focus on their
area:

• Development work

• Testing work

• Operations work

• DevOps methodology development

Overall cost estimates by
calculating the "DevOps tax"

What is the DevOps tax?

Automation provides visible benefits for any software
producing organization. The build, deployment and test
processes become faster and more reliable, which improves
quality and increases value throughput.

However, these benefits do not come free of charge. An
increased level of automation equates to an increased number
of automation-related tools and integrations. The maintenance
burden required to keep the systems up and running increases
with the number of tools and integrations.

People involved in the process end up spending part of their
valuable time in tool maintenance. This time spent in toolchain
maintenance, time that could have been used for more value-
adding R&D work, is called the “DevOps tax”.

Estimates with a 10% DevOps tax

According to Forrester research, “developers spend on average
10% of their time in tool maintenance”. By using the 10% rule
as a starting point, it is relatively easy to estimate the amount of
DevOps tax paid, in terms of person months.

Running an effective and highly optimized software
development and delivery organization is a demanding job.
Teams have to balance tight schedules, ever increasing system
complexity and a scarcity of skilled experts.

An integrated DevOps tool chain, like any assembly line, is a
key enabler for operational efficiency. As the level of
automation increases, the tooling platforms become more
extensive and the accompanying maintenance and support
tasks become more complex.

The combination of demanding schedules and increasing
system complexity forces teams to choose where to focus.
Should they be the experts in the software development and
delivery, maintaining the assembly line tooling, or both?

For most organizations the answer should be relatively clear.
They should spend the majority of their time working on the
software itself.

A team of 10 developers loses 1 person year worth of time in tool
maintenance that could have been spent on more effective
value adding development. This means that on average, at any
given time, 1 full time engineer’s worth of effort is reserved for
tool related maintenance and support tasks.

Outsourcing some (let’s assume a moderate 50%) of the
toolchain maintenance to a service provider for a team of 20
developers has the same effect as hiring a new full time
employee. The benefits over hiring a completely new person are
obvious - there’s no need to go through time consuming
recruitment and onboarding processes because “new
employee” is already known by the organization. The “new”
employee already knows the work details and is ready to
contribute from day one.

Direct cost factors in more
detail

Tool maintenance and development
work estimates

This chapter gives further guidance for calculating direct tool
maintenance and development efforts. The actual work hours
spent in each of the tasks depends on multiple factors:

• Skills and experience of the maintenance and support

 personnel

• Level of maintenance automation

• Toolchain scale and complexity - no. of tools, tool extensions,

 and integrations

• Amount of toolchain data payload

• Number of (active) users

• Environment type (on-prem, public cloud, etc.)

• Expected system uptime and support

• SLA targets

Relative work loads - tool platform
wide tasks

The tasks described in the following table apply to the complete
toolchain as a whole. The effort estimates are relative and based
on practical experience. For example, a task graded at 12 takes
12 times the effort of a task graded at 1.

6

Relative work loads - tool specific
tasks

The following tasks are tool specific, which means that the
complete workload of a toolchain can be calculated by
multiplying the tool specific work effort by the number of tools
in use.

Risks related to insufficient
toolchain

Neglecting to properly maintain the software assembly line
carries significant risks:

• Savings in direct maintenance will always generate

 additional indirect costs because the toolchain will not

 work reliably, causing downtime.

• Unreliable systems lower production throughput and cause

 overall dissatisfaction within the R&D teams.

• Failing to keep the system up to date via frequent and

 systematic upgrades will generate technical debt that

 accrues over time. Paying back the debt after a prolonged

 period of poor maintenance can be difficult and very

 expensive.

• A poorly managed system is a source of severe security

 related risks.

Benefits of a professionally
managed toolchain

The benefits of a professionally managed software assembly
line are clear:

• The system works reliably and efficiently, enabling the teams

 to focus on more value adding work and deliver with higher

 throughput.

• The software R&D development, quality and operations

 experts are happy because they do not have to spend a

 significant part of their time in tool maintenance.

• Systematic, gradual toolchain development ensures that it

 develops in line with needs and requirements and doesn’t

 accrue unnecessary technical debt.

• The systems, including critical assets like requirements,

 documentation, source code and binaries stay secure.

Automation brings enormous
savings and benefits, but we
need to be aware that there
are costs too. Learning how to
measure and mitigate them is
essential if you want to avoid
accumulating technical debt
and remain truly agile. To find
out how you can reduce the
“DevOps tax” in your
company talk to one of
our experts.

www.eficode.com

The assembly line is a must-have system but the teams rarely
need to excel in tool maintenance to be competitive in the field
where they actually compete. It is an area that can be
outsourced to domain experts.

You can easily find out the costs related to an outsourced
managed assembly line service. However, for an educated
“make or buy” decision, one also has to be able to estimate the
internal costs of running an internally maintained tool chain.
The purpose of this document is to give guidance for making
these estimates.

This guide does not provide any actual numeric information.
The actual figures depend heavily on the size of the
organization, the number of tools and toolchains in use, and
the skills and professionalism of the internal support and
maintenance operations.

Basic cost factors

Overview

The costs of running internally managed tool chains are often
hidden because the assembly lines are set up and maintained by
project personnel as a side job. Additionally, while lacking a
centralized platform, teams may have to set up “throw away”
assembly lines on a project-by-project basis. This causes
repeating and overlapping costs related to platform
installation, toolchain maintenance, and software licences.

The overall cost is a combination of expenditures in three
categories:

Direct costs - costs from actual tooling related maintenance
and support work e.g. hours spent installing, maintaining,
servicing, problem solving, and supporting the toolchain.
Project specific assembly lines with overlapping licences may
cause additional cost compared to a centralized platform model.

Indirect costs - costs accumulating as lost working hours
while the platform is not in use due to e.g. poor platform
maintenance and/or insufficient incident management
practices.

Opportunity costs - time spent by development, quality
assurance, or operations experts in servicing the toolchain
instead of focusing on their primary assignment.

As a rule of thumb, neglecting the work that generates direct
costs will cause hard-to-measure but often more costly
indirect expenses.

Direct costs

Hours spent in:

• Tool installation

• Expanding the platform with new tools and tool extensions

 (also testing the extensions prior to assigning them to

 production)

• Continuous maintenance: keeping track of the updates,

 update installation, system fine-tuning, capacity planning,

 etc.

• Providing tool related user support and helpdesk service

• Tool integration and maintenance of the existing integrations

• Building and keeping up the support/maintenance

 competence

• Developing the tool set: planning, design, installation of new

 functionalities

• Maintaining the underlying HW/OS platform

• Building and keeping up the HW/OS platform maintenance

 competence

• Incident management and recovery (including practice

 rounds)

• Tool licence management and optimization

Disaster recovery dry runs 3

Kernel security updates
(inc. preparations and testing) 3

Backup testing 3

Monitoring, analyzing and
reacting to monitor data 12

New feature tracking and analysis 6

Personnel training and
competence development 12

Tool vendor management
(licences, etc.)

1

Task

Network management
(VPN, authentication, firewalls etc.)

1

System change management 6

Relative effort
(units per month or year)

24/7 incident management,
SLA based 6

Indirect costs

Hours lost due to:

• Problems in tool availability

• Problems in tool-to-tool integrations

• Insufficient tool update procedures (e.g. lost

 efficiency due to the use of old tool versions)

• Insufficient or slow user support

Opportunity costs

Time that should have been
spent on delivering value to
customers (new features, better
quality...) is wasted on basic tool
maintenance and support.
Experts cannot focus on their
area:

• Development work

• Testing work

• Operations work

• DevOps methodology development

Overall cost estimates by
calculating the "DevOps tax"

What is the DevOps tax?

Automation provides visible benefits for any software
producing organization. The build, deployment and test
processes become faster and more reliable, which improves
quality and increases value throughput.

However, these benefits do not come free of charge. An
increased level of automation equates to an increased number
of automation-related tools and integrations. The maintenance
burden required to keep the systems up and running increases
with the number of tools and integrations.

People involved in the process end up spending part of their
valuable time in tool maintenance. This time spent in toolchain
maintenance, time that could have been used for more value-
adding R&D work, is called the “DevOps tax”.

Estimates with a 10% DevOps tax

According to Forrester research, “developers spend on average
10% of their time in tool maintenance”. By using the 10% rule
as a starting point, it is relatively easy to estimate the amount of
DevOps tax paid, in terms of person months.

Running an effective and highly optimized software
development and delivery organization is a demanding job.
Teams have to balance tight schedules, ever increasing system
complexity and a scarcity of skilled experts.

An integrated DevOps tool chain, like any assembly line, is a
key enabler for operational efficiency. As the level of
automation increases, the tooling platforms become more
extensive and the accompanying maintenance and support
tasks become more complex.

The combination of demanding schedules and increasing
system complexity forces teams to choose where to focus.
Should they be the experts in the software development and
delivery, maintaining the assembly line tooling, or both?

For most organizations the answer should be relatively clear.
They should spend the majority of their time working on the
software itself.

Tool performance tuning 3

Staging environment data updates
(inc. preparations and testing)

3

Tool specific security fixes 6

Tool version upgrades 18

System development
(planning, design, installation
of new functionalities)

12

Personnel training and
competence development
Supporting the rest of the
organization in tool
configuration and usage

12

24

Environment management and
scaling (servers)

24

Task

Troubleshooting 24

Database migrations 1

Relative effort
(units per month or year)

Environment management and
scaling (cloud) 12

A team of 10 developers loses 1 person year worth of time in tool
maintenance that could have been spent on more effective
value adding development. This means that on average, at any
given time, 1 full time engineer’s worth of effort is reserved for
tool related maintenance and support tasks.

Outsourcing some (let’s assume a moderate 50%) of the
toolchain maintenance to a service provider for a team of 20
developers has the same effect as hiring a new full time
employee. The benefits over hiring a completely new person are
obvious - there’s no need to go through time consuming
recruitment and onboarding processes because “new
employee” is already known by the organization. The “new”
employee already knows the work details and is ready to
contribute from day one.

Direct cost factors in more
detail

Tool maintenance and development
work estimates

This chapter gives further guidance for calculating direct tool
maintenance and development efforts. The actual work hours
spent in each of the tasks depends on multiple factors:

• Skills and experience of the maintenance and support

 personnel

• Level of maintenance automation

• Toolchain scale and complexity - no. of tools, tool extensions,

 and integrations

• Amount of toolchain data payload

• Number of (active) users

• Environment type (on-prem, public cloud, etc.)

• Expected system uptime and support

• SLA targets

Relative work loads - tool platform
wide tasks

The tasks described in the following table apply to the complete
toolchain as a whole. The effort estimates are relative and based
on practical experience. For example, a task graded at 12 takes
12 times the effort of a task graded at 1.

7

Relative work loads - tool specific
tasks

The following tasks are tool specific, which means that the
complete workload of a toolchain can be calculated by
multiplying the tool specific work effort by the number of tools
in use.

Risks related to insufficient
toolchain

Neglecting to properly maintain the software assembly line
carries significant risks:

• Savings in direct maintenance will always generate

 additional indirect costs because the toolchain will not

 work reliably, causing downtime.

• Unreliable systems lower production throughput and cause

 overall dissatisfaction within the R&D teams.

• Failing to keep the system up to date via frequent and

 systematic upgrades will generate technical debt that

 accrues over time. Paying back the debt after a prolonged

 period of poor maintenance can be difficult and very

 expensive.

• A poorly managed system is a source of severe security

 related risks.

Benefits of a professionally
managed toolchain

The benefits of a professionally managed software assembly
line are clear:

• The system works reliably and efficiently, enabling the teams

 to focus on more value adding work and deliver with higher

 throughput.

• The software R&D development, quality and operations

 experts are happy because they do not have to spend a

 significant part of their time in tool maintenance.

• Systematic, gradual toolchain development ensures that it

 develops in line with needs and requirements and doesn’t

 accrue unnecessary technical debt.

• The systems, including critical assets like requirements,

 documentation, source code and binaries stay secure.

Automation brings enormous
savings and benefits, but we
need to be aware that there
are costs too. Learning how to
measure and mitigate them is
essential if you want to avoid
accumulating technical debt
and remain truly agile. To find
out how you can reduce the
“DevOps tax” in your
company talk to one of
our experts.

www.eficode.com

The assembly line is a must-have system but the teams rarely
need to excel in tool maintenance to be competitive in the field
where they actually compete. It is an area that can be
outsourced to domain experts.

You can easily find out the costs related to an outsourced
managed assembly line service. However, for an educated
“make or buy” decision, one also has to be able to estimate the
internal costs of running an internally maintained tool chain.
The purpose of this document is to give guidance for making
these estimates.

This guide does not provide any actual numeric information.
The actual figures depend heavily on the size of the
organization, the number of tools and toolchains in use, and
the skills and professionalism of the internal support and
maintenance operations.

Basic cost factors

Overview

The costs of running internally managed tool chains are often
hidden because the assembly lines are set up and maintained by
project personnel as a side job. Additionally, while lacking a
centralized platform, teams may have to set up “throw away”
assembly lines on a project-by-project basis. This causes
repeating and overlapping costs related to platform
installation, toolchain maintenance, and software licences.

The overall cost is a combination of expenditures in three
categories:

Direct costs - costs from actual tooling related maintenance
and support work e.g. hours spent installing, maintaining,
servicing, problem solving, and supporting the toolchain.
Project specific assembly lines with overlapping licences may
cause additional cost compared to a centralized platform model.

Indirect costs - costs accumulating as lost working hours
while the platform is not in use due to e.g. poor platform
maintenance and/or insufficient incident management
practices.

Opportunity costs - time spent by development, quality
assurance, or operations experts in servicing the toolchain
instead of focusing on their primary assignment.

As a rule of thumb, neglecting the work that generates direct
costs will cause hard-to-measure but often more costly
indirect expenses.

Direct costs

Hours spent in:

• Tool installation

• Expanding the platform with new tools and tool extensions

 (also testing the extensions prior to assigning them to

 production)

• Continuous maintenance: keeping track of the updates,

 update installation, system fine-tuning, capacity planning,

 etc.

• Providing tool related user support and helpdesk service

• Tool integration and maintenance of the existing integrations

• Building and keeping up the support/maintenance

 competence

• Developing the tool set: planning, design, installation of new

 functionalities

• Maintaining the underlying HW/OS platform

• Building and keeping up the HW/OS platform maintenance

 competence

• Incident management and recovery (including practice

 rounds)

• Tool licence management and optimization

Indirect costs

Hours lost due to:

• Problems in tool availability

• Problems in tool-to-tool integrations

• Insufficient tool update procedures (e.g. lost

 efficiency due to the use of old tool versions)

• Insufficient or slow user support

Opportunity costs

Time that should have been
spent on delivering value to
customers (new features, better
quality...) is wasted on basic tool
maintenance and support.
Experts cannot focus on their
area:

• Development work

• Testing work

• Operations work

• DevOps methodology development

Overall cost estimates by
calculating the "DevOps tax"

What is the DevOps tax?

Automation provides visible benefits for any software
producing organization. The build, deployment and test
processes become faster and more reliable, which improves
quality and increases value throughput.

However, these benefits do not come free of charge. An
increased level of automation equates to an increased number
of automation-related tools and integrations. The maintenance
burden required to keep the systems up and running increases
with the number of tools and integrations.

People involved in the process end up spending part of their
valuable time in tool maintenance. This time spent in toolchain
maintenance, time that could have been used for more value-
adding R&D work, is called the “DevOps tax”.

Estimates with a 10% DevOps tax

According to Forrester research, “developers spend on average
10% of their time in tool maintenance”. By using the 10% rule
as a starting point, it is relatively easy to estimate the amount of
DevOps tax paid, in terms of person months.

Running an effective and highly optimized software
development and delivery organization is a demanding job.
Teams have to balance tight schedules, ever increasing system
complexity and a scarcity of skilled experts.

An integrated DevOps tool chain, like any assembly line, is a
key enabler for operational efficiency. As the level of
automation increases, the tooling platforms become more
extensive and the accompanying maintenance and support
tasks become more complex.

The combination of demanding schedules and increasing
system complexity forces teams to choose where to focus.
Should they be the experts in the software development and
delivery, maintaining the assembly line tooling, or both?

For most organizations the answer should be relatively clear.
They should spend the majority of their time working on the
software itself.

A team of 10 developers loses 1 person year worth of time in tool
maintenance that could have been spent on more effective
value adding development. This means that on average, at any
given time, 1 full time engineer’s worth of effort is reserved for
tool related maintenance and support tasks.

Outsourcing some (let’s assume a moderate 50%) of the
toolchain maintenance to a service provider for a team of 20
developers has the same effect as hiring a new full time
employee. The benefits over hiring a completely new person are
obvious - there’s no need to go through time consuming
recruitment and onboarding processes because “new
employee” is already known by the organization. The “new”
employee already knows the work details and is ready to
contribute from day one.

Direct cost factors in more
detail

Tool maintenance and development
work estimates

This chapter gives further guidance for calculating direct tool
maintenance and development efforts. The actual work hours
spent in each of the tasks depends on multiple factors:

• Skills and experience of the maintenance and support

 personnel

• Level of maintenance automation

• Toolchain scale and complexity - no. of tools, tool extensions,

 and integrations

• Amount of toolchain data payload

• Number of (active) users

• Environment type (on-prem, public cloud, etc.)

• Expected system uptime and support

• SLA targets

Relative work loads - tool platform
wide tasks

The tasks described in the following table apply to the complete
toolchain as a whole. The effort estimates are relative and based
on practical experience. For example, a task graded at 12 takes
12 times the effort of a task graded at 1.

8

Relative work loads - tool specific
tasks

The following tasks are tool specific, which means that the
complete workload of a toolchain can be calculated by
multiplying the tool specific work effort by the number of tools
in use.

Risks related to insufficient
toolchain

Neglecting to properly maintain the software assembly line
carries significant risks:

• Savings in direct maintenance will always generate

 additional indirect costs because the toolchain will not

 work reliably, causing downtime.

• Unreliable systems lower production throughput and cause

 overall dissatisfaction within the R&D teams.

• Failing to keep the system up to date via frequent and

 systematic upgrades will generate technical debt that

 accrues over time. Paying back the debt after a prolonged

 period of poor maintenance can be difficult and very

 expensive.

• A poorly managed system is a source of severe security

 related risks.

Benefits of a professionally
managed toolchain

The benefits of a professionally managed software assembly
line are clear:

• The system works reliably and efficiently, enabling the teams

 to focus on more value adding work and deliver with higher

 throughput.

• The software R&D development, quality and operations

 experts are happy because they do not have to spend a

 significant part of their time in tool maintenance.

• Systematic, gradual toolchain development ensures that it

 develops in line with needs and requirements and doesn’t

 accrue unnecessary technical debt.

• The systems, including critical assets like requirements,

 documentation, source code and binaries stay secure.

Automation brings enormous
savings and benefits, but we
need to be aware that there
are costs too. Learning how to
measure and mitigate them is
essential if you want to avoid
accumulating technical debt
and remain truly agile. To find
out how you can reduce the
“DevOps tax” in your
company talk to one of
our experts.

www.eficode.com

The assembly line is a must-have system but the teams rarely
need to excel in tool maintenance to be competitive in the field
where they actually compete. It is an area that can be
outsourced to domain experts.

You can easily find out the costs related to an outsourced
managed assembly line service. However, for an educated
“make or buy” decision, one also has to be able to estimate the
internal costs of running an internally maintained tool chain.
The purpose of this document is to give guidance for making
these estimates.

This guide does not provide any actual numeric information.
The actual figures depend heavily on the size of the
organization, the number of tools and toolchains in use, and
the skills and professionalism of the internal support and
maintenance operations.

Basic cost factors

Overview

The costs of running internally managed tool chains are often
hidden because the assembly lines are set up and maintained by
project personnel as a side job. Additionally, while lacking a
centralized platform, teams may have to set up “throw away”
assembly lines on a project-by-project basis. This causes
repeating and overlapping costs related to platform
installation, toolchain maintenance, and software licences.

The overall cost is a combination of expenditures in three
categories:

Direct costs - costs from actual tooling related maintenance
and support work e.g. hours spent installing, maintaining,
servicing, problem solving, and supporting the toolchain.
Project specific assembly lines with overlapping licences may
cause additional cost compared to a centralized platform model.

Indirect costs - costs accumulating as lost working hours
while the platform is not in use due to e.g. poor platform
maintenance and/or insufficient incident management
practices.

Opportunity costs - time spent by development, quality
assurance, or operations experts in servicing the toolchain
instead of focusing on their primary assignment.

As a rule of thumb, neglecting the work that generates direct
costs will cause hard-to-measure but often more costly
indirect expenses.

Direct costs

Hours spent in:

• Tool installation

• Expanding the platform with new tools and tool extensions

 (also testing the extensions prior to assigning them to

 production)

• Continuous maintenance: keeping track of the updates,

 update installation, system fine-tuning, capacity planning,

 etc.

• Providing tool related user support and helpdesk service

• Tool integration and maintenance of the existing integrations

• Building and keeping up the support/maintenance

 competence

• Developing the tool set: planning, design, installation of new

 functionalities

• Maintaining the underlying HW/OS platform

• Building and keeping up the HW/OS platform maintenance

 competence

• Incident management and recovery (including practice

 rounds)

• Tool licence management and optimization

Indirect costs

Hours lost due to:

• Problems in tool availability

• Problems in tool-to-tool integrations

• Insufficient tool update procedures (e.g. lost

 efficiency due to the use of old tool versions)

• Insufficient or slow user support

Opportunity costs

Time that should have been
spent on delivering value to
customers (new features, better
quality...) is wasted on basic tool
maintenance and support.
Experts cannot focus on their
area:

• Development work

• Testing work

• Operations work

• DevOps methodology development

Overall cost estimates by
calculating the "DevOps tax"

What is the DevOps tax?

Automation provides visible benefits for any software
producing organization. The build, deployment and test
processes become faster and more reliable, which improves
quality and increases value throughput.

However, these benefits do not come free of charge. An
increased level of automation equates to an increased number
of automation-related tools and integrations. The maintenance
burden required to keep the systems up and running increases
with the number of tools and integrations.

People involved in the process end up spending part of their
valuable time in tool maintenance. This time spent in toolchain
maintenance, time that could have been used for more value-
adding R&D work, is called the “DevOps tax”.

Estimates with a 10% DevOps tax

According to Forrester research, “developers spend on average
10% of their time in tool maintenance”. By using the 10% rule
as a starting point, it is relatively easy to estimate the amount of
DevOps tax paid, in terms of person months.

Running an effective and highly optimized software
development and delivery organization is a demanding job.
Teams have to balance tight schedules, ever increasing system
complexity and a scarcity of skilled experts.

An integrated DevOps tool chain, like any assembly line, is a
key enabler for operational efficiency. As the level of
automation increases, the tooling platforms become more
extensive and the accompanying maintenance and support
tasks become more complex.

The combination of demanding schedules and increasing
system complexity forces teams to choose where to focus.
Should they be the experts in the software development and
delivery, maintaining the assembly line tooling, or both?

For most organizations the answer should be relatively clear.
They should spend the majority of their time working on the
software itself.

A team of 10 developers loses 1 person year worth of time in tool
maintenance that could have been spent on more effective
value adding development. This means that on average, at any
given time, 1 full time engineer’s worth of effort is reserved for
tool related maintenance and support tasks.

Outsourcing some (let’s assume a moderate 50%) of the
toolchain maintenance to a service provider for a team of 20
developers has the same effect as hiring a new full time
employee. The benefits over hiring a completely new person are
obvious - there’s no need to go through time consuming
recruitment and onboarding processes because “new
employee” is already known by the organization. The “new”
employee already knows the work details and is ready to
contribute from day one.

Direct cost factors in more
detail

Tool maintenance and development
work estimates

This chapter gives further guidance for calculating direct tool
maintenance and development efforts. The actual work hours
spent in each of the tasks depends on multiple factors:

• Skills and experience of the maintenance and support

 personnel

• Level of maintenance automation

• Toolchain scale and complexity - no. of tools, tool extensions,

 and integrations

• Amount of toolchain data payload

• Number of (active) users

• Environment type (on-prem, public cloud, etc.)

• Expected system uptime and support

• SLA targets

Relative work loads - tool platform
wide tasks

The tasks described in the following table apply to the complete
toolchain as a whole. The effort estimates are relative and based
on practical experience. For example, a task graded at 12 takes
12 times the effort of a task graded at 1.

9

eficoderoot@eficode.com

Contact us:

Relative work loads - tool specific
tasks

The following tasks are tool specific, which means that the
complete workload of a toolchain can be calculated by
multiplying the tool specific work effort by the number of tools
in use.

Risks related to insufficient
toolchain

Neglecting to properly maintain the software assembly line
carries significant risks:

• Savings in direct maintenance will always generate

 additional indirect costs because the toolchain will not

 work reliably, causing downtime.

• Unreliable systems lower production throughput and cause

 overall dissatisfaction within the R&D teams.

• Failing to keep the system up to date via frequent and

 systematic upgrades will generate technical debt that

 accrues over time. Paying back the debt after a prolonged

 period of poor maintenance can be difficult and very

 expensive.

• A poorly managed system is a source of severe security

 related risks.

Benefits of a professionally
managed toolchain

The benefits of a professionally managed software assembly
line are clear:

• The system works reliably and efficiently, enabling the teams

 to focus on more value adding work and deliver with higher

 throughput.

• The software R&D development, quality and operations

 experts are happy because they do not have to spend a

 significant part of their time in tool maintenance.

• Systematic, gradual toolchain development ensures that it

 develops in line with needs and requirements and doesn’t

 accrue unnecessary technical debt.

• The systems, including critical assets like requirements,

 documentation, source code and binaries stay secure.

Automation brings enormous
savings and benefits, but we
need to be aware that there
are costs too. Learning how to
measure and mitigate them is
essential if you want to avoid
accumulating technical debt
and remain truly agile. To find
out how you can reduce the
“DevOps tax” in your
company talk to one of
our experts.

www.eficode.com

10

eficoderoot@eficode.com

www.eficoderoot.com

 +45 31 68 98 75

+358 207 40 11 22

+49 172 4 15 16 17

 +46 76 340 30 50

+31 20 280 41 18

+47 48 67 63 60

www.eficode.com

