

Automating safe, hands-off deployments
Clare Liguori

Automating safe, hands-off deployments
Copyright © 2020 Amazon Web Services, Inc. and/or its affiliates. All rights reserved

Automating safe, hands-off deployments

1

When I interviewed for my job at Amazon, I made sure to ask one of the interviewers, “How often do

you deploy to production?” At the time, I was working on a product that rolled out a major release

once or twice a year, but sometimes I needed to release a small fix in between big releases. For each

fix that I released, I spent hours carefully rolling it out. Then I frantically checked logs and metrics to

see if I had broken anything after the deployment and needed to roll it back.

I read that Amazon practiced continuous deployment, so when I interviewed, I wanted to know how

much time I would have to spend managing and watching deployments as a developer at Amazon. The

interviewer told me that changes were automatically deployed to production multiple times a day by

continuous deployment pipelines. When I asked how much of his day was spent carefully shepherding

each of those deployments and watching logs and metrics for any impact as I had been doing, he told

me usually none. Because the pipelines did this work for his team, most deployments weren’t actively

watched by anyone. “Whoa!” I said. After I joined Amazon, I was excited to find out exactly how these

“hands-off” automated deployments worked.

How safe continuous deployment frees up developer time

Since then, I’ve seen first-hand the way that Amazon sets up continuous deployment pipelines to help

us deploy quickly and safely. I came to appreciate how our continuous deployment safety practices

free up developer time from work on deployments. When I push production code into the main branch

of my service’s source code repository, usually I forget about it and go on to my next task, while my

team’s pipeline takes over getting that change into production. The release of my code change to a

production service is fully automated by the pipeline, which means that the last time I or any other

developer touches or reviews a piece of code is when it is merged into the source code repository.

My team set up that pipeline with automated steps that deploy our changes safely to production so

we don’t have to watch each deployment. The pipeline runs the latest changes through a set of tests

and deployment safety checks. These automated steps prevent customer-impacting defects from

reaching production and limit the impact of defects on customers if they do reach production. As a

developer, I’m able to trust that the pipeline will cautiously and safely deploy my change to production

for me, without the need for me to actively watch it.

The journey to continuous delivery

Amazon didn’t start out practicing continuous delivery, and developers here used to spend hours and

days managing deployments of their code to production. We adopted continuous delivery across the

company as a way to automate and standardize how we deployed software and to reduce the time it

took for changes to reach production. Improvements to our release process built up incrementally over

time. We identified deployment risks and found ways to mitigate those risks through new safety

automation in pipelines. We continue to iterate on the release process by identifying new risks and

new ways of improving deployment safety. To learn more about our journey to continuous delivery

and how we continue to improve, see the Builders’ Library article Going faster with continuous delivery.

Automating safe, hands-off deployments

2

The four pipeline phases

In this article, we walk through the steps a code change goes through in a pipeline at Amazon on its

way to production. A typical continuous delivery pipeline has four major phases—source, build, test,

and production (prod). We’ll dive into the details of what happens in each of these pipeline phases for

a typical AWS service, and provide you with an example of how a typical AWS service team might set

up one of their pipelines.

Source and build

The following diagram gives you an overview of the sources and build steps you might find in typical

AWS service team pipelines.

Pipeline sources

Pipelines at Amazon automatically validate and safely deploy any type of source change to production,

not only changes to application code. They can validate and deploy changes to sources such as website

static assets, tools, tests, infrastructure, configuration, and the application’s underlying operation

system (OS). All of these changes are version controlled in individual source code repositories. The

Automating safe, hands-off deployments

3

source code dependencies, such as libraries, programming languages, and parameters like AMI IDs, are

automatically upgraded to the latest version at least weekly.

These sources are deployed in individual pipelines with the same safety mechanisms (like automatic

rollback) that we use for deploying application code. For example, configuration values for a service

that can change at runtime (like API rate limit increases and feature flags) are automatically deployed

in a dedicated configuration pipeline. Source changes are automatically rolled back if they cause any

issues in production for the service (such as failures to parse a configuration file).

A typical microservice might have an application code pipeline, an infrastructure pipeline, an OS

patching pipeline, a configuration/feature flags pipeline, and an operator tools pipeline. Having

multiple pipelines for the same microservice helps us deploy changes to production faster. Application

code changes that fail integration tests and block the application pipeline don’t affect other pipelines.

For example, they don’t block infrastructure code changes from reaching production in the

infrastructure pipeline. All the pipelines for the same microservice tend to look very similar. For

example, a feature flags pipeline uses the same safe deployment techniques as the application code

pipeline, because a bad feature flag configuration change can have an impact on production just as a

bad application code change can.

Code review

All changes going to production start with a code review and must be approved by a team member

before merging into the mainline branch (our version of “master” or “trunk”), which automatically

starts the pipeline. The pipeline enforces the requirement that all commits on the mainline branch

must be code reviewed and approved by a member of the service team for that pipeline. The pipeline

will block any unreviewed commits from being deployed.

With fully automated pipelines, the code review is the last manual review and approval that a code

change receives from an engineer before being deployed to production, so this is a critical step. Code

reviewers evaluate the code’s correctness and also evaluate whether the change can be safely

deployed to production. They evaluate whether the code has sufficient tests (unit tests, integration

tests, and canary tests), whether it is sufficiently instrumented for deployment monitoring, and

whether it can be safely rolled back. Some teams use a custom checklist like the one in the following

sample, which is automatically added to each of the team’s code reviews to explicitly check for

deployment safety concerns.

Example code review checklist

Testing

[] Did you write new unit tests for this change?

[] Did you write new integration tests for this change?

Include the test commands you ran locally to test this change:

``` 

mvn test && mvn verify 

``` 


Automating safe, hands-off deployments

4

Monitoring

[] Will this change be covered by our existing monitoring?

 (no new canaries/metrics/dashboards/alarms are required)

[] Will this change have no (or positive) effect on resources and/or

limits?

 (including CPU, memory, AWS resources, calls to other services)

[] Can this change be deployed to Prod without triggering any alarms?

Rollout

[] Can this change be merged immediately into the pipeline upon approval?

[] Are all dependent changes already deployed to Prod?

[] Can this change be rolled back without any issues after deployment to

Prod?

Build and unit tests

In the build stage, the code is compiled and unit tested. The build tools and build logic can vary from

language to language and even from team to team. For example, teams can choose the unit test

frameworks, linters, and static analysis tools that work best for them. In addition, teams can choose

the configuration of those tools, such as the minimum acceptable code coverage in their unit test

framework. The tools and types of tests that run will also vary depending on the type of code that is

deployed by the pipeline. For example, unit tests are used for application code and linters are used for

infrastructure as code templates. All builds run without network access to isolate the builds and

encourage build reproducibility. Typically, unit tests mock (simulate) all their API calls to dependencies,

such as other AWS services. Interactions with “live” non-mocked dependencies are tested later in the

pipeline in integration tests. Compared to integration tests, unit tests with mocked dependencies are

able to exercise edge cases like unexpected errors returned from API calls and ensure graceful error

handling in the code. When the build is complete, the compiled code is packaged and signed.

Test deployments in pre-production environments

Before deploying to production, the pipeline deploys and validates changes in multiple pre-production

environments, for example, alpha, beta, and gamma. Alpha and beta validate that the latest code

functions as expected by running functional API tests and end-to-end integration tests. Gamma

validates that the code is both functional and that it can be safely deployed to production. Gamma is

as production-like as possible, including the same deployment configuration, the same monitoring

and alarms, and the same continuous canary testing as production. Gamma is also deployed in multiple

AWS Regions to catch any potential impact from regional differences.

Automating safe, hands-off deployments

5

Integration tests

Integration tests help us to automatically use a service just like customers do as part of the

pipeline. These tests exercise the full stack end-to-end by calling real APIs running on real

infrastructure in each pre-production stage for all meaningful customer scenarios. The aim of

integration testing is to catch any unexpected or incorrect behavior of the service before deploying to

production.

While unit tests run against mocked dependencies, integration tests run against a pre-production

system that calls real dependencies, validating the assumptions of the mocks about how those

dependencies behave. Integration tests validate the behavior of individual APIs across different inputs.

In addition, they validate full workflows that join multiple APIs like creating a new resource, describing

the new resource until it is ready, and then using the resource.

Integration tests run both positive and negative test cases, such as providing invalid input to an API

and checking that an “invalid input” error is returned as expected. Some pipelines run a fuzz test to

generate many possible API inputs and validate that they don’t cause any internal failures in the

service. Some pipelines also run a short load test in a pre-production stage to ensure that the latest

changes don’t cause any latency or throughput regressions at real load levels.

Backward compatibility and one-box testing

Before deploying to production, we need to ensure that the latest code is backward-compatible and

can be safely deployed alongside the current code. For example, we need to detect whether the latest

code writes data in a format that the current code can’t parse. The one-box stage in gamma deploys

the latest code to the smallest unit of deployment, such as to a single virtual machine or

single container, or to a small percentage of AWS Lambda function invocations. This one-box

deployment leaves the rest of the gamma environment deployed with the current code for some

Automating safe, hands-off deployments

6

period of time, such as 30 minutes or one hour. Traffic doesn’t have to be specially driven to the one

box. It can be added to the same load balancer or poll the same queue as the rest of the gamma

environment. For example, in a gamma environment of ten containers behind a load balancer, the one

box receives ten percent of the gamma traffic generated by continuous canary tests. The one-box

deployment monitors canary test success rates and service metrics to detect any impact from the

deployment or from having a “mixed” fleet deployed side by side.

The following diagram shows the state of a gamma environment after new code has been deployed

to the one-box stage but has not yet been deployed to the rest of the gamma fleet:

We also need to ensure that the latest code is backward-compatible with our dependencies, for

example if a change needs to be made across microservices in a specific order. Microservices in pre-

production environments typically call the production endpoint of any services owned by another

team, like Amazon Simple Storage Service (S3) or Amazon DynamoDB, but they call the pre-production

endpoint of the service team’s other microservices in the same stage. For example, a team’s

microservice A in gamma calls the same team’s microservice B in gamma, but it calls the production

endpoint for Amazon S3.

Some pipelines also run integration tests again in a separate backward-compatibility stage we call

zeta, which is a separate environment where each microservice calls only production endpoints, testing

that changes going to production are compatible with the code currently deployed in production

across multiple microservices. For example, microservice A in zeta calls microservice B’s prod endpoint

and the production endpoint for Amazon S3.

For a description of strategies for writing and deploying backward-compatible changes, see the

Builders’ Library article Ensuring rollback safety during deployments.

Production deployments

Our #1 objective for production deployments at AWS is to prevent negative impact to multiple Regions

at the same time and to multiple Availability Zones in the same Region. Limiting the scope of each

individual deployment limits the potential impact on customers from failed production deployments

and prevents a multi-Availability-Zone or multi-Region impact. To limit the scope of automatic

Automating safe, hands-off deployments

7

deployments, we split the production phase of the pipeline into many stages and many deployments

to individual Regions. Teams split regional deployments into even smaller-scoped deployments by

deploying to individual Availability Zones or to their service’s individual internal shards (called cells) in

their pipeline, to further limit the scope of potential impact from a failed production deployment.

Staggered deployments

Each team needs to balance the safety of small-scoped deployments with the speed at which we can

deliver changes to customers in all Regions. Deploying changes to 24 Regions or 76 Availability Zones

through the pipeline one at a time has the lowest risk of causing broad impact, but it could take weeks

for the pipeline to deliver a change to customers globally. We have found that grouping deployments

into “waves” of increasing size, as seen in the previous sample prod pipeline, helps us achieve a good

balance between deployment risk and speed. Each wave’s stage in the pipeline orchestrates

deployments to a group of Regions, with changes being promoted from wave to wave. New changes

can enter the production phase of the pipeline at any time. After a set of changes is promoted from

the first step to the second step in wave 1, the next set of changes from gamma is promoted into the

first step of wave 1, so we don’t end up with large bundles of changes waiting to be deployed to

production.

The first two waves in the pipeline build the most confidence in the change: The first wave deploys to

a Region with a low number of requests to limit the possible impact of the first production deployment

of the new change. The wave deploys to only one Availability Zone (or cell) at a time within that Region

to cautiously deploy the change across the Region. The second wave then deploys to one Availability

Zone (or cell) at a time in a Region with a high number of requests where it is highly likely that

customers will exercise all the new code paths and where we get good validation of the changes.

After we have higher confidence in the safety of the change from the initial pipeline waves’

deployments, we can deploy to more and more Regions in parallel in the same wave. For example, the

previous sample prod pipeline deploys to three Regions in wave 3, then to up to 12 Regions in wave

4, then to the remaining Regions in wave 5. The exact number and choice of Regions in each of these

waves and the number of waves in a service team’s pipeline depend on the individual service’s usage

Automating safe, hands-off deployments

8

patterns and scale. The later waves in the pipeline still help us achieve our objective to prevent

negative impact to multiple Availability Zones in the same Region. When a wave deploys to multiple

Regions in parallel, it follows the same cautious rollout behavior for each Region that was used in the

initial waves. Each step in the wave only deploys to a single Availability Zone or cell from each Region

in the wave.

One-box and rolling deployments

Deployments to each production wave start with a one-box stage. As in the gamma one-box stage,

each prod one-box stage deploys the latest code to one box (a single virtual machine, single container,

or a small percentage of Lambda function invocations) in each of the wave’s Regions or Availability

Zones. The prod one-box deployment minimizes the potential impact of changes on the wave by

initially limiting the requests that are served by the new code in that wave. Typically, the one box

serves at most ten percent of overall requests for the Region or Availability Zone. If the change causes

a negative impact in the one box, the pipeline automatically rolls back the change and doesn’t promote

it to the rest of the prod stages.

After the one-box stage, most teams use rolling deployments to deploy to the wave’s main production

fleet. A rolling deployment ensures that the service has enough capacity to serve the production load

throughout the deployment. It controls the rate at which the new code is put into service (that is, when

it starts serving production traffic) to limit the impact of changes. In a typical rolling deployment to a

Region, at most 33 percent of the service’s boxes in that Region (containers, Lambda invocations, or

software running on virtual machines) are replaced with the new code.

During a deployment, the deployment system first chooses an initial batch of up to 33 percent of

boxes to replace with the new code. During the replacement, at least 66 percent of the overall capacity

is healthy and serving requests. All services are scaled to withstand losing an Availability Zone in the

Region, so we know that the service can still serve production load at this capacity. After the

deployment system determines that a box in the initial batch of boxes is passing health checks, a box

from the remaining fleet can be replaced with the new code, and so on. Meanwhile, we still maintain

a minimum of 66 percent of capacity to serve requests at all times. To further limit the impact of

changes, some teams’ pipelines deploy as little as five percent of their boxes at a time. However, then

they do fast rollbacks, where the system replaces 33 percent of the boxes at a time with the previous

code to speed up rollback.

The following diagram shows the state of a production environment in the middle of a rolling

deployment. The new code has been deployed to the one-box stage and to the first batch of the main

prod fleet. Another batch has been removed from the load balancer and is being shut down for

replacement.

Automating safe, hands-off deployments

9

Metrics monitoring and auto-rollback

Automated deployments in the pipeline typically don’t have a developer who actively watches each

deployment to prod, checks the metrics, and manually rolls back if they see issues. These deployments

are completely hands-off. The deployment system actively monitors an alarm to determine if it needs

to automatically roll back a deployment. A rollback will switch the environment back to the container

image, AWS Lambda function deployment package, or internal deployment package that was

previously deployed. Our internal deployment packages are similar to container images, because the

packages are immutable and use a checksum to verify their integrity.

Each microservice in each Region typically has a high-severity alarm that triggers on thresholds for the

metrics that impact the service’s customers (like fault rates and high latency) and on system health

metrics (like CPU utilization), as illustrated in the following example. This high-severity alarm is used

to page the oncall engineer and to automatically roll back the service if a deployment is in

progress. Often, the rollback is already in progress by the time the oncall engineer has been paged

and starts engaging.

Example high-severity microservice alarm

ALARM("FrontEndApiService_High_Fault_Rate") OR

ALARM("FrontEndApiService_High_P50_Latency") OR

ALARM("FrontEndApiService_High_P90_Latency") OR

ALARM("FrontEndApiService_High_P99_Latency") OR

ALARM("FrontEndApiService_High_Cpu_Usage") OR

ALARM("FrontEndApiService_High_Memory_Usage") OR

ALARM("FrontEndApiService_High_Disk_Usage") OR

ALARM("FrontEndApiService_High_Errors_In_Logs") OR

ALARM("FrontEndApiService_High_Failing_Health_Checks")

Changes introduced by a deployment can have an impact on upstream and downstream microservices,

so the deployment system needs to monitor the high-severity alarm for the microservice under

deployment and monitor the high-severity alarms for the team’s other microservices to determine

when to roll back. Deployed changes can also affect the metrics of continuous canary testing, so the

Automating safe, hands-off deployments

10

deployment system additionally needs to monitor for failing canary tests. To automatically roll back

on all of these possible areas of impact, teams create high-severity aggregate alarms for the

deployment system to monitor. High-severity aggregate alarms roll up the state of all of the team’s

individual microservice high-severity alarms and the state of the canary alarms into a single aggregate

state, as in the following sample. If any of the high-severity alarms for the team’s microservices go

into the alarm state, all of the team’s ongoing deployments across all of their microservices in that

Region automatically roll back.

Example high-severity aggregate rollback alarm

ALARM("FrontEndApiService_High_Severity") OR

ALARM("BackendApiService_High_Severity") OR

ALARM("BackendWorkflows_High_Severity") OR

ALARM("Canaries_High_Severity")

A one-box stage serves a small percentage of overall traffic, so issues introduced by a one-box

deployment might not trigger the service’s high-severity rollback alarm. To catch and roll back

changes that cause issues in the one-box stage before they reach the rest of the prod stages, one-box

stages additionally roll back on metrics that are scoped to only the one box. For example, they roll

back on the fault rate of the requests that were served specifically by the one box, which makes up a

small percentage of overall number of requests.

Example one-box rollback alarm

ALARM("High_Severity_Aggregate_Rollback_Alarm") OR

ALARM("FrontEndApiService_OneBox_High_Fault_Rate") OR

ALARM("FrontEndApiService_OneBox_High_P50_Latency") OR

ALARM("FrontEndApiService_OneBox_High_P90_Latency") OR

ALARM("FrontEndApiService_OneBox_High_P99_Latency") OR

ALARM("FrontEndApiService_OneBox_High_Cpu_Usage") OR

ALARM("FrontEndApiService_OneBox_High_Memory_Usage") OR

ALARM("FrontEndApiService_OneBox_High_Disk_Usage") OR

ALARM("FrontEndApiService_OneBox_High_Errors_In_Logs") OR

ALARM("FrontEndApiService_OneBox_Failing_Health_Checks")

In addition to rolling back on alarms defined by the service team, our deployment system can also

detect and automatically roll back on anomalies in common metrics emitted by our internal web

service framework. Most of our microservices emit metrics such as request count, request latency, and

fault count in a standard format. Using these standard metrics, the deployment system can roll back

automatically if there are anomalies in the metrics during a deployment. Examples of this are if the

request count suddenly drops to zero, or if the latency or number of faults becomes much higher than

normal.

Bake time

Sometimes a negative impact caused by a deployment is not readily apparent. It’s slow burning. That

is, it doesn’t show up immediately during the deployment, especially if the service is under low load

at the time. Promoting the change to the next pipeline stage immediately after the deployment is

Automating safe, hands-off deployments

11

complete can end up having an impact in multiple Regions by the time the impact surfaces in the first

Region. Before promoting a change to the next production stage, each prod stage in the pipeline has

bake time, which is when the pipeline continues to monitor the team’s high-severity aggregate alarm

for any slow burning impact after a deployment is completed and before moving on to the next stage.

To calculate the amount of time we spend baking a deployment, we need to balance the risk of causing

a broader impact if we promote changes to multiple Regions too quickly versus the speed at which we

can deliver changes to customers globally. We have found that a good way to balance these risks is

for earlier waves in the pipeline to have a longer bake time while we build confidence in the safety of

the change, and then for later waves to have a shorter bake time. Our goal is to minimize the risk of

an impact that affects multiple Regions. Because most deployments are not actively watched by a

team member, the typical pipeline’s default bake times are conservative and will deploy a change to

all Regions in about four or five business days. Services that are larger or highly critical have even more

conservative bake times and times for their pipelines to deploy a change globally.

A typical pipeline waits at least one hour after each one-box stage, at least 12 hours after the first

regional wave, and at least two to four hours after each of the rest of the regional waves, with

additional bake time for individual Regions, Availability Zones, and cells within each wave. The bake

time includes requirements to wait for a specific number of data points in the team’s metrics (for

example, "wait for at least 100 requests to the Create API") to ensure that enough requests have

occurred to make it likely that the new code has been fully exercised. During the entire bake time, the

deployment is automatically rolled back if the team’s high-severity aggregate alarm goes into the

alarm state.

Though it’s extremely rare, in some cases an urgent change (like a security fix or a mitigation for a

large-scale event affecting service availability) might need to be delivered to customers more quickly

than the time the pipeline usually takes to bake changes and deploy. In these cases, we can dial down

the pipeline’s bake time to accelerate the deployment, but we require a high level of scrutiny on the

change to do this. For these cases we require the scrutiny of the organization’s Principal Engineers. The

team must review the code change, as well as its urgency and risk of impact, with very experienced

developers who are experts at operational safety. The change still goes through the same steps in the

pipeline as usual, but gets promoted to the next stage more quickly. We manage the risk of a faster

deployment by limiting the changes in flight in the pipeline during this time to allow only the most

minimal code changes needed to address the current issue and by actively watching the deployments.

Alarm and time window blockers

The pipeline prevents automatic deployments to production when there is a higher risk of causing a

negative impact. The pipeline uses a set of “blockers” that evaluate deployment risk. For example,

automatically deploying a new change to prod when an issue is currently ongoing in the environment

could make the impact worse or more prolonged. Before starting a new deployment to any prod stage,

the pipeline checks the team’s high-severity aggregate alarm to determine whether there are any

active issues. If the alarm is currently in the alarm state, the pipeline prevents the change from moving

forward. Pipelines can also check organization-wide alarms, like a large-scale event alarm that

indicates whether there is a broad impact in another team’s systems, and prevents starting a new

deployment that could add to the overall impact. These deployment blockers can be overridden by

developers when a change needs to be deployed to prod to recover from a high-severity issue.

Automating safe, hands-off deployments

12

The pipeline is also configured with a set of time windows that define when a deployment is allowed

to start. When we configure time windows, we need to balance two causes of deployment risk. On the

one hand, very small time windows can cause changes to pile up in the pipeline while the time window

is closed, increasing the likelihood that any one of those changes in the next deployment will have an

impact when the time window opens. On the other hand, very large time windows that go beyond

regular business hours increase the risk of prolonging the impact from a failed deployment. During

off-hours, it takes longer to engage the oncall engineer than during the day, when the oncall engineer

and other team members are working. During regular business hours the team can be more quickly

engaged after a failed deployment in case any manual recovery steps are needed.

Most deployments aren’t actively watched by a team member, so we optimize the timing of

deployments to minimize the time it takes to engage an oncall engineer, in case there is manual action

required for recovery after an automatic rollback. Oncall engineers typically take longer to engage at

night, on office holidays, and on weekends, so these times are excluded from the time

windows. Depending on the usage patterns of the service, some issues might not surface for hours

after the deployment, so many teams also exclude Fridays and late-afternoon deployments from their

time windows to reduce the risk of needing to engage the oncall engineer at night or during the

weekend after a deployment. We have found that this set of time windows enables a fast recovery

even when manual action is needed, ensures less engagement with oncall engineers outside of regular

working hours, and makes sure that a small number of changes is bundled together while the time

windows are closed.

Pipelines as code

The typical AWS service team owns many pipelines to deploy the team’s multiple microservices and

source types (application code, infrastructure code, OS patches, etc.). Each pipeline has many

deployment stages for an ever-increasing number of Regions and Availability Zones. This translates

into a lot of configuration for the team to manage in the pipeline system, in the deployment system,

and in the alarm system, and a lot of effort to keep up to date with the latest best practices and with

new Regions and Availability Zones. In the last few years, we have embraced practicing “pipelines as

code” as a way to more easily and consistently configure safe, up-to-date pipelines by modeling this

configuration in code. Our internal pipelines as code tool pulls from a centralized list of Regions and

Availability Zones to easily add new Regions and Availability Zones to pipelines across AWS. The tool

also allows teams to model pipelines using inheritance, defining configuration that is common across

a team’s pipelines in a parent class (like which Regions go in each wave and how long bake time should

be for each wave) and defining all microservice pipeline configuration as a subclass that inherits all

the common configuration.

Conclusion

At Amazon, we have built our automated deployment practices over time based on what helps us

balance deployment safety against deployment speed. At the same time, we want to minimize the

amount of time developers need to spend worrying about deployments. Building automated

deployment safety into the release process by using extensive pre-production testing, automatic

rollbacks, and staggered production deployments lets us minimize the potential impact on production

Automating safe, hands-off deployments

13

caused by deployments. This means that developers don’t need to actively watch deployments to

production.

With fully automated pipelines, developers use code reviews to check their code and also to approve

that the change is ready to go to production. After the change is merged into the source code

repository, the developer can move on to the next task and forget about the deployment, trusting the

pipeline to get their change to production safely and cautiously. The automated pipeline takes care of

deploying continuously to production multiple times a day, while balancing safety and speed. By

modeling our continuous delivery practice in code, it’s easier than ever for AWS service teams to set

up their pipelines to deploy their code changes automatically and safely.

